Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 249: 120944, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070346

RESUMO

Human exposure to micro- and nanoplastics (MNPs) commonly occurs through the consumption of contaminated drinking water. Among these, polystyrene (PS) is well-characterized and is one of the most abundant MNPs, accounting for 10 % of total plastics. Previous studies have focused on carbonaceous materials to remove MNPs by filtration, but most of the work has involved microplastics since nanoplastics (NPs) are smaller in size and more difficult to measure and remove. To address this need, green-engineered chlorophyll-amended sodium and calcium montmorillonites (SMCH and CMCH) were tested for their ability to bind and detoxify parent and fluorescently labeled PSNP using in vitro, in silico, and in vivo assays. In vitro dosimetry, isothermal analyses, thermodynamics, and adsorption/desorption kinetic models demonstrated 1) high binding capacities (173-190 g/kg), 2) high affinities (103), and 3) chemisorption as suggested by low desorption (≤42 %) and high Gibbs free energy and enthalpy (>|-20| kJ/mol) in the Langmuir and pseudo-second-order models. Computational dynamics simulations for 30 and 40 monomeric units of PSNP depicted that chlorophyll amendments increased the binding percentage and contributed to the sustained binding. Also, 64 % of PSNP bind to both the head and tail of chlorophyll aggregates, rather than the head or tail only. Fluorescent PSNP at 100 nm and 30 nm that were exposed to Hydra vulgaris showed concentration-dependent toxicity at 20-100 µg/mL. Importantly, the inclusion of 0.05-0.3 % CMCH and SMCH significantly (p ≤ 0.01) and dose-dependently reduced PSNP toxicity in morphological changes and feeding rate. The bioassay validated the in vitro and in silico predictions about adsorption efficacy and mechanisms and suggested that CMCH and SMCH are efficacious binders for PSNP in water.


Assuntos
Poliestirenos , Poluentes Químicos da Água , Humanos , Argila/química , Água/química , Plásticos , Microplásticos , Adsorção , Clorofila/análise , Poluentes Químicos da Água/análise
2.
Sci Adv ; 10(4): eadh1675, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277449

RESUMO

Millions of tons of plastics enter the oceans yearly, and they can be fragmented by ultraviolet and mechanical means into nanoplastics. Here, we report the direct observation of nanoplastics in global ocean water leveraging a unique shrinking surface bubble deposition (SSBD) technique. SSBD involves optically heating plasmonic nanoparticles to form a surface bubble and leveraging the Marangoni flow to concentrate suspended nanoplastics onto the surface, allowing direct visualization using electron microscopy. With the plasmonic nanoparticles co-deposited in SSBD, the surface-enhanced Raman spectroscopy effect is enabled for direct chemical identification of trace amounts of nanoplastics. In the water samples from two oceans, we observed nanoplastics made of nylon, polystyrene, and polyethylene terephthalate-all common in daily consumables. The plastic particles have diverse morphologies, such as nanofibers, nanoflakes, and ball-stick nanostructures. These nanoplastics may profoundly affect marine organisms, and our results can provide critical information for appropriately designing their toxicity studies.

3.
Environ Pollut ; 292(Pt B): 118442, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34748888

RESUMO

In response to the growing worldwide plastic pollution problem, the field of nanoplastics research is attempting to determine the risk of exposure to nanoparticles amidst their ever-increasing presence in the environment. Since little is known about the attributes of environmental nanoplastics (concentration, composition, morphology, and size) due to fundamental limitations in detection and quantification of smaller plastic particles, researchers often improvise by engineering nanoplastic particles with various surface modifications as models for laboratory toxicological testing. Polystyrene and other commercially available or easily synthesized polymer materials functionalized with surfactants or fluorophores are typically used for these studies. How surfactants, additives, fluorophores, the addition of surface functional groups for conjugation, or other changes to surface attributes alter toxicological profiles remains unclear. Additionally, the limited polymers used in laboratory models do not mimic the vast range of polymer types comprising environmental pollutants. Nanomaterials are tricky materials to investigate due to their high surface area, high surface energies, and their propensity to interact with molecules, proteins, and biological probes. These unique properties can often invalidate common laboratory assays. Extreme care must be taken to ensure that results are not artefactual. We have gathered zeta potential values for various polystyrene nanoparticles with different functionalization, in different solvents, from the reported literature. We also discuss the effects of surface engineering and solvent properties on interparticle interactions, agglomeration, particle-protein interactions, corona formation, nano-bio interfaces, and contemplate how these parameters might confound results. Various toxicological exemplars are critically reviewed, and the relevance and shortfalls of the most popular models used in nanoplastics toxicity studies published in the current literature are considered.


Assuntos
Nanopartículas , Nanoestruturas , Poluentes Químicos da Água , Microplásticos , Nanopartículas/toxicidade , Plásticos/toxicidade , Poliestirenos , Poluentes Químicos da Água/análise
4.
Nanomaterials (Basel) ; 12(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35889573

RESUMO

Nanoplastic pollution is increasing worldwide and poses a threat to humans, animals, and ecological systems. High-throughput, reliable methods for the isolation and separation of NMPs from drinking water, wastewater, or environmental bodies of water are of interest. We investigated iron oxide nanoparticles (IONPs) with hydrophobic coatings to magnetize plastic particulate waste for removal. We produced and tested IONPs synthesized using air-free conditions and in atmospheric air, coated with several polydimethylsiloxane (PDMS)-based hydrophobic coatings. Particles were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), superconducting quantum interference device (SQUID) magnetometry, dynamic light scattering (DLS), X-ray diffraction (XRD) and zeta potential. The IONPs synthesized in air contained a higher percentage of the magnetic spinel phase and stronger magnetization. Binding and recovery of NMPs from both salt and freshwater samples was demonstrated. Specifically, we were able to remove 100% of particles in a range of sizes, from 2-5 mm, and nearly 90% of nanoplastic particles with a size range from 100 nm to 1000 nm using a simple 2-inch permanent NdFeB magnet. Magnetization of NMPs using IONPs is a viable method for separation from water samples for quantification, characterization, and purification and remediation of water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA