RESUMO
Harnessing the acidity of HF/base reagents is of paramount importance to improve the efficiency and selectivity of fluorination reactions. Yet, no general method has been reported to evaluate their acidic properties, and experimental designs are still relying on a trial-and-error approach. We report a new method based on 19F NMR spectroscopy which allows highly sensitive measures and short-time analyses. Advantageously, the basic properties of the indicators can be determined upstream by DFT calculations, affording a simple yet robust semiempirical approach. In particular, the indicators used in this study were rationally designed to fit on the conceptually appealing and commonly used Hammett scale. This method has been applied to commercially available and recently developed HF/base reagents.
RESUMO
Here we report a method to reorganize the core structure of aliphatic unsaturated nitrogen-containing substrates exploiting polyprotonation in superacid solutions. The superelectrophilic activation of N-isopropyl systems allows for the selective formal Csp3 -H activation/cyclization or homologation / functionalization of nitrogen-containing substrates. This study also reveals that this skeletal reorganization can be controlled through protonation interplay. The mechanism of this process involves an original sequence of C-N bond cleavage, isopropyl cation generation and subsequent C-N bond and C-C bond formation. This was demonstrated through in situ NMR analysis and labelling experiments, also confirmed by DFT calculations.
RESUMO
Since the pioneer reports of the groups of Akiyama and Terada on Brønsted acid organocatalysis, this field never stopped growing with the development of ingenious strategies for the activation of challenging poorly reactive substrates. The development of superacidic organocatalysts is an important way to selectively functionalize reluctant electrophiles and other approaches have also emerged such as the combination of Lewis and Brønsted acids as well as the consecutive organocatalysis and superacid activation. This Concept aims to highlight these different strategies and demonstrate their complementarity.
Assuntos
Ácidos , Estrutura Molecular , Estereoisomerismo , CatáliseRESUMO
Under superacid conditions, aromatic amines are directly and regioselectively 1,1-difluoroethylated. Low temperature in situ NMR studies confirmed the presence of benzylic α-fluoronium and α-chloronium ions as key intermediates in the reaction. This method has a wide substrate scope and can be applied to the late-stage functionalization of natural alkaloids and active pharmaceutical ingredients.
Assuntos
AminasRESUMO
The field of medicinal chemistry is currently witnessing a deuterium rush owing to the remarkable properties of this element as bioisoster of hydrogen atom. Aromatic hydrogen isotope exchange (HIE) is one of the most studied strategies nowadays as it promises to access deuterium-modified drugs directly from their non-labeled parents. While most of the recent studies focus on metal-catalyzed C-H activation strategy, the use of superacidic conditions has been largely overlooked. This study shows that the use of TfOD as reaction medium allows the late-stage polydeuteration of a broad library of pharmaceuticals bearing a wide array of functional groups, complementing existing procedures.
Assuntos
Hidrogênio , Deutério/química , Hidrogênio/química , Preparações FarmacêuticasRESUMO
Enantioenriched complex fused-tricyclic azepanes or bridged-polycyclic azocanes were constructed via a two-step sequence involving an enantioselective organocascade followed by superacid activation of the domino adduct. The activated oxa-bridged azepane acts as a key hidden heptacyclic chiral N-acyl iminium ion triggering a chemo- and diastereoselective intramolecular mono- or di-arylation.
Assuntos
Estereoisomerismo , ÍonsRESUMO
The insertion of fluorine atoms and/or fluoroalkyl groups can lead to many beneficial effects in biologically active molecules, such as enhanced metabolic stability, bioavailability, lipophilicity, and membrane permeability, as well as a strengthening of protein-ligand binding interactions. However, this "magic effect" of fluorine atom(s) insertion can often be meaningless. Taking advantage of the wide range of data coming from the quest for carbonic anhydrase (CA) fluorinated inhibitors, this Minireview attempts to give "general guidelines" on how to wisely insert fluorine atom(s) within an inhibitor moiety to precisely enhance or disrupt ligand-protein interactions, depending on the target location of the fluorine substitution in the ligand. Multiple approaches such as ITC, kinetic and inhibition studies, X-ray crystallography, and NMR spectroscopy are useful in dissecting single binding contributions to the overall observed effect. The exploitation of innovative directions made in the field of protein and ligand-based fluorine NMR screening is also discussed to avoid misconduct and finely tune the exploitation of selective fluorine atom insertion in the future.
Assuntos
Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/metabolismo , Flúor/química , Inibidores da Anidrase Carbônica/metabolismo , Anidrases Carbônicas/química , Halogenação , Humanos , Estrutura Molecular , Ligação Proteica , SulfonamidasRESUMO
The transformation of glycals into 2,3-unsaturated glycosyl derivatives, reported by Ferrier in 1962, is supposed to involve an α,ß unsaturated glycosyl cation, an elusive ionic species that has still to be observed experimentally. Herein, while combination of TfOH and flow conditions failed to observe this ionic species, its extended lifetime in superacid solutions allowed its characterization by NMR-based structural analysis supported by DFT calculations. This allyloxycarbenium ion was further exploited in the Ferrier rearrangement to afford unsaturated nitrogen-containing C-aryl glycosides and C-alkyl glycosides under superacid and flow conditions, respectively.
RESUMO
"The extraordinary instability of such an "ion" accounts for many of the peculiarities of organic reactions" - Franck C. Whitmore (1932). This statement from Whitmore came in a period where carbocations began to be considered as intermediates in reactions. Ninety years later, pointing at the strong knowledge acquired from the contributions of famous organic chemists, carbocations are very well known reaction intermediates. Among them, destabilized carbocations - carbocations substituted with electron-withdrawing groups - are, however, still predestined to be transient species and sometimes considered as exotic ones. Among them, the CF3-substituted carbocations, frequently suggested to be involved in synthetic transformations but rarely considered as affordable intermediates for synthetic purposes, have long been investigated. This review highlights recent and past reports focusing on their study and potential in modern synthetic transformations.
RESUMO
Site-selective functionalization of arenes that is complementary to classical aromatic substitution reactions remains a long-standing quest in organic synthesis. Exploiting the generation of halenium ion through oxidative process and the protonation of the nitrogen containing function in HF/SbF5 , the chlorination and iodination of classically inert Csp2 -H bonds of aromatic amines occurs. Furthermore, the superacid-promoted (poly)protonation of the molecules acts as a protection, favoring the late-stage selective halogenation of natural alkaloids and active pharmaceutical ingredients.
RESUMO
Achieving in a straightforward way the synthesis of enantioenriched elaborated three-dimensional molecules related to bioactive natural products remains a long-standing quest in organic synthesis. Enantioselective organocatalysis potentially offers a unique opportunity to solve this problem, especially when combined with complementary modes of activation. Here, we report the sequential association of organocatalytic and superacid activations of simple linear achiral readily available precursors to promote the formation of unique highly elaborated chiral methylene-bridged benzazocanes exhibiting three to five fully-controlled stereocenters. This peculiar backbone, difficult to assemble by standard synthetic approaches, is closely related to bioactive natural and synthetic morphinans and benzomorphans. The formation of a highly reactive chiral 7-membered ring N-acyl iminium superelectrophilic ion, evidenced by low-temperature in situ NMR experiments, triggers a challenging stereoselective Friedel-Crafts-type cyclization.
RESUMO
Polycyclization reactions are among the most efficient synthetic tools for the synthesis of complex, polycyclic molecules in a single operation from simple starting materials. We report in this manuscript a full account on the discovery and development of a novel cationic polycyclization from readily available ynamides. Simple activation of these building blocks under acidic conditions enables the generation of highly reactive activated keteniminium ions, which triggers an unprecedented cationic polycyclization yielding highly substituted polycyclic nitrogen heterocycles possessing up to seven fused cycles and three contiguous stereocenters.
RESUMO
Upon activation under superacid conditions, functionalized tailor-made N-SCF3 sulfenamides served as reagents for the trifluoromethylthiolation of aromatic amines. This method has a broad substrate scope and can be used for the late-stage functionalization of complex molecules such as alkaloids or steroids. Mechanistic studies based on in situ low-temperature NMR spectroscopy revealed the involvement of dicationic superelectrophilic intermediates.
RESUMO
(E)- and (Z)-α-fluoroenamides could be easily prepared with high levels of chemo- and regioselectivities by hydrofluorination of readily available ynamides with HF/pyridine. The scope and limitations of this new process for the hydrofluorination of ynamides, as well as the stability of the resulting α-fluoroenamides, have been extensively studied. Theoretical calculations at the MP2 and B3LYP levels of theory showed that the resulting fluoroenamides exhibit geometrical and electronic properties that partially mirror those of ureas, therefore demonstrating that the hydrofluorination of ynamides provides a general, straightforward, and user-friendly approach to bioisosteres of ureas, potent building blocks for biological studies and medicinal chemistry.
Assuntos
Piridinas/química , Ureia/química , Catálise , Ésteres , Halogenação , Estrutura Molecular , Teoria Quântica , EstereoisomerismoRESUMO
A novel and efficient keteniminium-initiated cationic polycyclization is reported. This reaction, which only requires triflic acid or bistriflimide as promoters, affords a straightforward entry to polycyclic nitrogen heterocycles possessing up to three contiguous stereocenters and seven fused cycles. These complex, polycyclic molecules can be obtained in a single operation from readily available ynamides which were shown to be remarkable building blocks for multiple, consecutive cationic transformations.
RESUMO
Electrophilic aromatic substitution is one of the most mechanistically studied reactions in organic chemistry. However, precluded by innate substituent effects, the access to certain substitution patterns remains elusive. While selective C-H alkylation of biorelevant molecules is eagerly awaited, especially for the insertion of a methyl group whose magic effect can boost lead molecules potency, one of the most obvious strategies would rely on electrophilic aromatic substitution. Yet, the historical Friedel-Crafts methylation remains to date poorly selective and limited to activated simple aromatics. Here, we report the development of a selective electrophilic methylation enabling the direct access to highly desirable 1,3-disubstituted arenes. This study demonstrates that this reaction is driven by the generation of long-lived arenium intermediates generated by protonation in superacid and can be applied to a large variety of functionalized (hetero)aromatics going from standard building blocks to active pharmaceutical ingredients.
RESUMO
Carbonic anhydrase (CA) IV is a membrane-bound enzyme involved in important physio-pathological processes, such as excitation-contraction coupling in heart muscle, central nervous system (CNS) extracellular buffering, and mediation of inflammatory response after stroke. Known since the mid-1980s, this isoform is still largely unexplored when compared to other isoforms, mostly for the current lack of inhibitors targeting selectively this isoform. The discovery of selective CA IV inhibitors is thus largely awaited. In this work, we report ß-(di) fluoropropyl diamines as effective CA IV inhibitors, opening real perspectives for a new mode of selective inhibition of this isoform. Inhibition data reveal that the essential structure core to ensure a potent and selective inhibition of CA IV is the N-propyldiamine. Molecular modeling studies were employed to understand the binding mode of the synthesized amines. Conformational searches within the active site space carried out in an implicit solvent (water) model were also conducted.
RESUMO
The selective synthesis of tetrahydroquinolines and fluorinated arylamines was performed in superacid HF/SbF5 through a superelectrophilic ammonium-carbenium activation process. This anti-Markovnikov oriented reaction was applied to the straightforward synthesis of highly valued (fluorinated) nitrogen-containing heterocyclic compounds.
Assuntos
Antimônio/química , Desenho de Fármacos , Fluoretos/química , Hidrocarbonetos Fluorados/síntese química , Ácido Fluorídrico/química , Compostos Policíclicos/síntese química , Quinolinas/síntese química , Ciclização , Hidrocarbonetos Fluorados/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Compostos Policíclicos/química , Quinolinas/químicaRESUMO
A series of tertiary (fluorinated) benzenesulfonamides was synthesized in superacid HF-SbF5. To circumvent the problem of the in situ iminium ion formation, proved by low temperature NMR experiments, a tandem superacid catalysed cross-coupling reaction was employed to synthesize the benzofuzed sultams analogues. These tertiary benzenesulfonamides were tested as inhibitors of human carbonic anhydrases (hCAs, EC 4.2.1.1). These compounds did not inhibit the widespread off target hCA II isoform and showed strong selectivity toward tumor-associated carbonic anhydrase isoform IX. A dramatic effect of the electronic and structural shape of the inhibitors on selectivity was demonstrated, confirming the non-zinc-bonding mode of inhibition of this class of sulfonamides. This work allowed identifying a highly selective hCA IX inhibitor lead in this series.
Assuntos
Antígenos de Neoplasias/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Sulfonamidas/farmacologia , Antígenos de Neoplasias/química , Anidrase Carbônica IX , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/químicaRESUMO
A series of new, halogen containing N-substituted 4-aminobenzenesulfonamides were synthesized by using superacid HF/SbF5 chemistry and investigated as inhibitors of several human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, that is, the cytosolic hCA I and II and, the tumor-associated transmembrane isoforms hCA IX and XII. Despite the substitution of the sulfonamide function, the presence of fluorine atom(s) in ß position of the sulfonamide function strongly favors hCA inhibition. A similar effect of the ß-fluorinated alkyl substitution on the amino function has been also observed. Among the tested compounds, several chlorinated derivatives have been identified as selective nanomolar, tumor-associated isoforms inhibitors. These non-primary sulfonamides probably bind in the coumarin-binding site, at the entrance of the cavity, and not to the metal ion as the primary sulfonamide inhibitors.