Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Mol Cancer ; 22(1): 129, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563568

RESUMO

BACKGROUND: This Phase 1 study evaluates the intra- and peritumoral administration by convection enhanced delivery (CED) of human recombinant Bone Morphogenetic Protein 4 (hrBMP4) - an inhibitory regulator of cancer stem cells (CSCs) - in recurrent glioblastoma. METHODS: In a 3 + 3 dose escalation design, over four to six days, fifteen recurrent glioblastoma patients received, by CED, one of five doses of hrBMP4 ranging from 0·5 to 18 mg. Patients were followed by periodic physical, neurological, blood testing, magnetic resonance imaging (MRI) and quality of life evaluations. The primary objective of this first-in-human study was to determine the safety, dose-limiting toxicities (DLT) and maximum tolerated dose (MTD) of hrBMP4. Secondary objectives were to assess potential efficacy and systemic exposure to hrBMP4 upon intracerebral infusion. RESULTS: Intra- and peritumoral infusion of hrBMP4 was safe and well-tolerated. We observed no serious adverse events related to this drug. Neither MTD nor DLT were reached. Three patients had increased hrBMP4 serum levels at the end of infusion, which normalized within 4 weeks, without sign of toxicity. One patient showed partial response and two patients a complete (local) tumor response, which was maintained until the most recent follow-up, 57 and 30 months post-hrBMP4. Tumor growth was inhibited in areas permeated by hrBMP4. CONCLUSION: Local delivery of hrBMP4 in and around recurring glioblastoma is safe and well-tolerated. Three patients responded to the treatment. A complete response and long-term survival occurred in two of them. This warrants further clinical studies on this novel treatment targeting glioblastoma CSCs. TRIAL REGISTRATION: ClinicaTrials.gov identifier: NCT02869243.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Qualidade de Vida , Proteína Morfogenética Óssea 4/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Encefálicas/patologia , Dose Máxima Tolerável
2.
Br J Cancer ; 129(8): 1327-1338, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37620410

RESUMO

BACKGROUND: Patient-derived glioma stem-like cells (GSCs) have become the gold-standard in neuro-oncological research; however, it remains to be established whether loss of in situ microenvironment affects the clinically-predictive value of this model. We implemented a GSC monolayer system to investigate in situ-in vitro molecular correspondence and the relationship between in vitro and patient response to temozolomide (TMZ). METHODS: DNA/RNA-sequencing was performed on 56 glioblastoma tissues and 19 derived GSC cultures. Sensitivity to TMZ was screened across 66 GSC cultures. Viability readouts were related to clinical parameters of corresponding patients and whole-transcriptome data. RESULTS: Tumour DNA and RNA sequences revealed strong similarity to corresponding GSCs despite loss of neuronal and immune interactions. In vitro TMZ screening yielded three response categories which significantly correlated with patient survival, therewith providing more specific prediction than the binary MGMT marker. Transcriptome analysis identified 121 genes related to TMZ sensitivity of which 21were validated in external datasets. CONCLUSION: GSCs retain patient-unique hallmark gene expressions despite loss of their natural environment. Drug screening using GSCs predicted patient response to TMZ more specifically than MGMT status, while transcriptome analysis identified potential biomarkers for this response. GSC drug screening therefore provides a tool to improve drug development and precision medicine for glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Biomarcadores , DNA/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Linhagem Celular Tumoral , Microambiente Tumoral
3.
Artigo em Inglês | MEDLINE | ID: mdl-37870792

RESUMO

OBJECTIVES: The current research examines whether Turkish immigrant descent parents' perceived discrimination, intergroup contact with the majority, nonimmigrant society, and acculturation orientations are related to their psychological and sociocultural adaptation (i.e., life satisfaction and parental self-efficacy). Additionally, it explores potential differences in these relations between three European countries. METHOD: Participants were parents (Mage = 38.05, SD = 5.81, 85.3%-99.6% female) of Turkish origin from England (n = 293), Germany (n = 338), and the Netherlands (n = 247) who participated in a large-scale structured interview study. RESULTS: As predicted, perceived discrimination was negatively associated with Turkish immigrant descent parents' psychological adaptation, although not with sociocultural adaptation. Positive contact with the majority, nonimmigrant society positively predicted both psychological and sociocultural adaptation. Contrary to the expected, only desire for contact was positively associated with both psychological and sociocultural adaptation, whereas culture and language adoption was not related to adaptation. CONCLUSIONS: Together these findings highlight the importance of majority, nonimmigrant societies fostering conditions and policies that promote opportunities for harmonious interactions between immigrant/immigrant descendants and majority, and nonimmigrant populations. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

4.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958662

RESUMO

Chemotherapy using temozolomide is the standard treatment for patients with glioblastoma. Despite treatment, prognosis is still poor largely due to the emergence of temozolomide resistance. This resistance is closely linked to the widely recognized inter- and intra-tumoral heterogeneity in glioblastoma, although the underlying mechanisms are not yet fully understood. To induce temozolomide resistance, we subjected 21 patient-derived glioblastoma cell cultures to Temozolomide treatment for a period of up to 90 days. Prior to treatment, the cells' molecular characteristics were analyzed using bulk RNA sequencing. Additionally, we performed single-cell RNA sequencing on four of the cell cultures to track the evolution of temozolomide resistance. The induced temozolomide resistance was associated with two distinct phenotypic behaviors, classified as "adaptive" (ADA) or "non-adaptive" (N-ADA) to temozolomide. The ADA phenotype displayed neurodevelopmental and metabolic gene signatures, whereas the N-ADA phenotype expressed genes related to cell cycle regulation, DNA repair, and protein synthesis. Single-cell RNA sequencing revealed that in ADA cell cultures, one or more subpopulations emerged as dominant in the resistant samples, whereas N-ADA cell cultures remained relatively stable. The adaptability and heterogeneity of glioblastoma cells play pivotal roles in temozolomide treatment and contribute to the tumor's ability to survive. Depending on the tumor's adaptability potential, subpopulations with acquired resistance mechanisms may arise.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Linhagem Celular Tumoral , Fenótipo , Genômica , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica
5.
Small ; 18(49): e2204485, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36207287

RESUMO

A major obstacle in glioma research is the lack of in vitro models that can retain cellular features of glioma cells in vivo. To overcome this limitation, a 3D-engineered scaffold, fabricated by two-photon polymerization, is developed as a cell culture model system to study patient-derived glioma cells. Scanning electron microscopy, (live cell) confocal microscopy, and immunohistochemistry are employed to assess the 3D model with respect to scaffold colonization, cellular morphology, and epidermal growth factor receptor localization. Both glioma patient-derived cells and established cell lines successfully colonize the scaffolds. Compared to conventional 2D cell cultures, the 3D-engineered scaffolds more closely resemble in vivo glioma cellular features and allow better monitoring of individual cells, cellular protrusions, and intracellular trafficking. Furthermore, less random cell motility and increased stability of cellular networks is observed for cells cultured on the scaffolds. The 3D-engineered glioma scaffolds therefore represent a promising tool for studying brain cancer mechanobiology as well as for drug screening studies.


Assuntos
Receptores ErbB , Humanos , Biofísica
6.
Acta Obstet Gynecol Scand ; 99(10): 1387-1395, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32306380

RESUMO

INTRODUCTION: Doppler ultrasound cardiotocography is a non-invasive alternative that, despite its poor specificity, is often first choice for intrapartum monitoring. Doppler ultrasound suffers from signal loss due to fetal movements and is negatively correlated with maternal body mass index (BMI). Reported accuracy of fetal heart rate monitoring by Doppler ultrasound varies between 10.6 and 14.3 bpm and reliability between 62.4% and 73%. The fetal scalp electrode (FSE) is considered the reference standard for fetal monitoring but can only be applied after membranes have ruptured with sufficient cervical dilatation and is sometimes contra-indicated. A non-invasive alternative that overcomes the shortcomings of Doppler ultrasound, providing reliable information on fetal heart rate, could be the answer. Non-invasive fetal electrocardiography (NI-fECG) uses a wireless electrode patch on the maternal abdomen to obtain both fetal and maternal heart rate signals as well as an electrohysterogram. We aimed to validate a wireless NI-fECG device for intrapartum monitoring in term singleton pregnancies, by comparison with the FSE. MATERIAL AND METHODS: We performed a multicenter cross-sectional observational study at labor wards of 6 hospitals located in the Netherlands, Belgium, and Spain. Laboring women with a healthy singleton fetus in cephalic presentation and gestational age between 36 and 42 weeks were included. Participants received an abdominal electrode patch and FSE after written informed consent. Accuracy, reliability, and success rate of fetal heart rate readings were determined, using FSE as reference standard. Analysis was performed for the total population and measurement period as well as separated by labor stage and BMI class (≤30 and >30 kg/m2 ). RESULTS: We included a total of 125 women. Simultaneous registrations with NI-fECG and FSE were available in 103 women. Overall accuracy is -1.46 bpm and overall reliability 86.84%. Overall success rate of the NI-fECG is around 90% for the total population as well as for both BMI subgroups. Success rate dropped to 63% during second stage of labor, similar results are found when looking at the separate BMI groups. CONCLUSIONS: Performance measures of the NI-fECG device are good in the overall group and the separate BMI groups. Compared with Doppler ultrasound performance measures from the literature, NI-fECG is a more accurate alternative. Especially, when women have a higher BMI, NI-fECG performs well, resembling FSE performance measures.


Assuntos
Cardiotocografia/instrumentação , Frequência Cardíaca Fetal , Tecnologia sem Fio , Adulto , Índice de Massa Corporal , Cardiotocografia/métodos , Estudos Transversais , Eletrodos , Feminino , Humanos , Gravidez , Estudos Prospectivos , Reprodutibilidade dos Testes
7.
Early Child Res Q ; 36: 212-222, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26949286

RESUMO

Focusing on the continuity in the quality of classroom environments as children transition from preschool into elementary school, this study examined the associations between classroom quality in pre-kindergarten and kindergarten and children's social skills and behavior problems in kindergarten and first grade. Participants included 1175 ethnically-diverse children (43% African American) living in low-wealth rural communities of the US. Results indicated that children who experienced higher levels of emotional and organizational classroom quality in both pre-kindergarten and kindergarten demonstrated better social skills and fewer behavior problems in both kindergarten and first grade comparing to children who did not experience higher classroom quality. The examination of the first grade results indicated that the emotional and organizational quality of pre-kindergarten classrooms was the strongest predictor of children's first grade social skills and behavior problems. The study results are discussed from theoretical, practical, and policy perspectives.

8.
Int J Cancer ; 137(7): 1630-42, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25802036

RESUMO

Glioblastoma multiforme (GBM) is the most common primary brain tumor and is without exception lethal. GBMs modify the immune system, which contributes to the aggressive nature of the disease. Particularly, cells of the monocytic lineage, including monocytes, macrophages and microglia, are affected. We investigated the influence of GBM-derived extracellular vesicles (EVs) on the phenotype of monocytic cells. Proteomic profiling showed GBM EVs to be enriched with proteins functioning in extracellular matrix interaction and leukocyte migration. GBM EVs appeared to skew the differentiation of peripheral blood-derived monocytes to alternatively activated/M2-type macrophages. This was observed for EVs from an established cell line, as well as for EVs from primary cultures of GBM stem-like cells (GSCs). Unlike EVs of non-GBM origin, GBM EVs induced modified expression of cell surface proteins, modified cytokine secretion (e.g., an increase in vascular endothelial growth factor and IL-6) and increased phagocytic capacity of the macrophages. Most pronounced effects were observed upon incubation with EVs from mesenchymal GSCs. GSC EVs also affected primary human microglia, resulting in increased expression of Membrane type 1-matrix metalloproteinase, a marker for GBM microglia and functioning as tumor-supportive factor. In conclusion, GBM-derived EVs can modify cells of the monocytic lineage, which acquire characteristics that resemble the tumor-supportive phenotypes observed in patients.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Leucócitos Mononucleares/patologia , Neoplasias Encefálicas/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Exossomos/metabolismo , Exossomos/patologia , Glioblastoma/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Microglia/metabolismo , Microglia/patologia , Fenótipo
9.
Radiology ; 275(3): 746-54, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25686366

RESUMO

PURPOSE: To (a) evaluate whether the lysine-rich protein (LRP) magnetic resonance (MR) imaging reporter gene can be engineered into G47Δ, a herpes simplex-derived oncolytic virus that is currently being tested in clinical trials, without disrupting its therapeutic effectiveness and (b) establish the ability of chemical exchange saturation transfer (CEST) MR imaging to demonstrate G47Δ-LRP. MATERIALS AND METHODS: The institutional subcommittee for research animal care approved all in vivo procedures. Oncolytic herpes simplex virus G47Δ, which carried the LRP gene, was constructed and tested for its capacity to replicate in cancer cells and express LRP in vitro. The LRP gene was detected through CEST imaging of lysates derived from cells infected with G47Δ-LRP or the control G47Δ-empty virus. G47Δ-LRP was then tested for its therapeutic effectiveness and detection with CEST MR imaging in vivo. Images of rat gliomas were acquired before and 8-10 hours after injection of G47Δ-LRP (n = 7) or G47Δ-empty virus (n = 6). Group comparisons were analyzed with a paired t test. RESULTS: No significant differences were observed in viral replication or therapeutic effectiveness between G47Δ-LRP and G47Δ-empty virus. An increase in CEST image contrast was observed in cell lysates (mean ± standard deviation, 0.52% ± 0.06; P = .01) and in tumors (1.1% ± 0.3, P = .02) after infection with G47Δ-LRP but not G47Δ-empty viruses. No histopathologic differences were observed between tumors infected with G47Δ-LRP and G47Δ-empty virus. CONCLUSION: This study has demonstrated the ability of CEST MR imaging to show G47Δ-LRP at acute stages of viral infection. The introduction of the LRP transgene had no effect on the viral replication or therapeutic effectiveness. This can aid in development of the LRP gene as a reporter for the real-time detection of viral spread. Online supplemental material is available for this article.


Assuntos
Genes Reporter , Lisina , Imageamento por Ressonância Magnética , Terapia Viral Oncolítica/métodos , Animais , Células Cultivadas , Masculino , Ratos , Ratos Endogâmicos F344 , Simplexvirus
10.
J Transl Med ; 13: 74, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25886061

RESUMO

BACKGROUND: The current standard of care for Glioblastoma Multiforme (GBM) consists of fractionated focal irradiation with concomitant temozolomide (TMZ) chemotherapy. A promising strategy to increase the efficacy of TMZ is through interference with the DNA damage repair machinery, by poly(ADP-ribose) polymerase protein inhibition(PARPi). The objective of the present study was to investigate the therapeutic benefit of combination therapy in patient-derived glioma stem-like cells (GSC). METHODS: Combination therapy feasibility was tested on established GBM cell lines U373 and T98. We developed an in vitro drug-screening assay based on GSC cultures derived from a panel of primary patient tissue samples (n = 20) to evaluate the effect of PARPi (ABT-888) monotherapy and combination therapy with TMZ. Therapeutic effect was assessed by viability, double stranded breaks, apoptosis and autophagy assays and longitudinal microscopic cell monitoring was performed. O-6-methylguanine-DNA methyltransferase (MGMT) status was determined by methylation assay and protein expression by western blots. RESULTS: PARPi monotherapy was found to decrease viability by more than 25% in 4 of the 20 GSCs (20%) at 10 µM. TMZ monotherapy at 50 µM and 100 µM was effective in 12 and 14 of the 20 GSCs, respectively. TMZ resistance to 100 µM was found in 7 of 8 MGMT protein positive cultures. Potentiation of TMZ therapy through PARPi was found in 90% (n = 20) of GSCs, of which 6 were initially resistant and 7 were sensitive to TMZ monotherapy. Increased induction of double stranded breaks and apoptosis were noted in responsive GSCs. There was a trend noted, albeit statistically insignificant, of increased autophagy both in western blots and accumulation of autophagosomes. CONCLUSION: PARPi mediated potentiation of TMZ is independent of TMZ sensitivity and can override MGMT(-) mediated resistance when administered simultaneously. Response to combination therapy was associated with increased double strand breaks induction, and coincided by increased apoptosis and autophagy. PARPi addition potentiates TMZ treatment in primary GSCs. PARPi could potentially enhance the therapeutic efficacy of the standard of care in GBM.


Assuntos
Benzimidazóis/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Dacarbazina/análogos & derivados , Glioma/tratamento farmacológico , Glioma/patologia , Proteínas Supressoras de Tumor/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Benzimidazóis/farmacologia , Meios de Cultura Livres de Soro , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Temozolomida , Células Tumorais Cultivadas
11.
Acta Neuropathol ; 129(4): 597-607, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25724300

RESUMO

Temozolomide (TMZ) increases the overall survival of patients with glioblastoma (GBM), but its role in the clinical management of diffuse low-grade gliomas (LGG) is still being defined. DNA hypermethylation of the O (6) -methylguanine-DNA methyltransferase (MGMT) promoter is associated with an improved response to TMZ treatment, while inactivation of the DNA mismatch repair (MMR) pathway is associated with therapeutic resistance and TMZ-induced mutagenesis. We previously demonstrated that TMZ treatment of LGG induces driver mutations in the RB and AKT-mTOR pathways, which may drive malignant progression to secondary GBM. To better understand the mechanisms underlying TMZ-induced mutagenesis and malignant progression, we explored the evolution of MGMT methylation and genetic alterations affecting MMR genes in a cohort of 34 treatment-naïve LGGs and their recurrences. Recurrences with TMZ-associated hypermutation had increased MGMT methylation compared to their untreated initial tumors and higher overall MGMT methylation compared to TMZ-treated non-hypermutated recurrences. A TMZ-associated mutation in one or more MMR genes was observed in five out of six TMZ-treated hypermutated recurrences. In two cases, pre-existing heterozygous deletions encompassing MGMT, or an MMR gene, were followed by TMZ-associated mutations in one of the genes of interest. These results suggest that tumor cells with methylated MGMT may undergo positive selection during TMZ treatment in the context of MMR deficiency.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/complicações , Distúrbios no Reparo do DNA/tratamento farmacológico , Dacarbazina/análogos & derivados , Glioma/complicações , Neoplasias Encefálicas/tratamento farmacológico , Estudos de Coortes , Metilação de DNA/efeitos dos fármacos , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Distúrbios no Reparo do DNA/etiologia , Dacarbazina/uso terapêutico , Progressão da Doença , Feminino , Glioma/tratamento farmacológico , Humanos , Masculino , Mutação/genética , Receptores Imunológicos/genética , Estatísticas não Paramétricas , Temozolomida , Proteínas Supressoras de Tumor/genética
12.
Cell Rep Methods ; 4(3): 100716, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38430913

RESUMO

Oncolytic virus (OV) clinical trials have demonstrated remarkable efficacy in subsets of patients with glioblastoma (GBM). However, the lack of tools to predict this response hinders the advancement of a more personalized application of OV therapy. In this study, we characterize an ex vivo co-culture system designed to examine the immune response to OV infection of patient-derived GBM neurospheres in the presence of autologous peripheral blood mononuclear cells (PBMCs). Co-culture conditions were optimized to retain viability and functionality of both tumor cells and PBMCs, effectively recapitulating the well-recognized immunosuppressive effects of GBM. Following OV infection, we observed elevated secretion of pro-inflammatory cytokines and chemokines, including interferon γ, tumor necrosis factor α, CXCL9, and CXCL10, and marked changes in immune cell activation markers. Importantly, OV treatment induced unique patient-specific immune responses. In summary, our co-culture platform presents an avenue for personalized screening of viro-immunotherapies in GBM, offering promise as a potential tool for future patient stratification in OV therapy.


Assuntos
Glioblastoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Leucócitos Mononucleares/patologia , Imunoterapia
13.
Mol Ther Oncol ; 32(2): 200804, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38694569

RESUMO

Despite decades of research, the prognosis of high-grade pediatric brain tumors (PBTs) remains dismal; however, recent cases of favorable clinical responses were documented in clinical trials using oncolytic viruses (OVs). In the current study, we employed four different species of OVs: adenovirus Delta24-RGD, herpes simplex virus rQNestin34.5v1, reovirus R124, and the non-virulent Newcastle disease virus rNDV-F0-GFP against three entities of PBTs (high-grade gliomas, atypical teratoid/rhabdoid tumors, and ependymomas) to determine their in vitro efficacy. These four OVs were screened on 14 patient-derived PBT cell cultures and the degree of oncolysis was assessed using an ATP-based assay. Subsequently, the observed viral efficacies were correlated to whole transcriptome data and Gene Ontology analysis was performed. Although no significant tumor type-specific OV efficacy was observed, the analysis revealed the intrinsic biological processes that associated with OV efficacy. The predictive power of the identified expression profiles was further validated in vitro by screening additional PBTs. In summary, our results demonstrate OV susceptibility of multiple patient-derived PBT entities and the ability to predict in vitro responses to OVs using unique expression profiles. Such profiles may hold promise for future OV preselection with effective oncolytic potency in a specific tumor, therewith potentially improving OV responses.

14.
J Gene Med ; 15(3-4): 134-41, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23606319

RESUMO

BACKGROUND: The oncolytic adenovirus Delta24-RGD is currently being tested in phase I trials for the treatment of glioblastoma (GBM). Literature suggests that frequently prescribed anticonvulsants for these patients, phenytoin (PHE), valproic acid (VPA) and levetiracetam (LEV), may interfere with cellular mechanisms of cancer or oncolytic virus activity. We therefore investigated the direct effects of these drugs on Delta24-RGD infection and oncolytic activity. METHODS: The anticonvulsants PHE, VPA, and LEV were combined with Delta24-RGD treatment in established glioma cell lines as well as on a panel of patient-derived GBM cultures. Effects on infection efficiency were assessed using luciferase-encoding adenoviral vectors. Oncolytic activity was determined by WST-1 assay and viral progeny production was quantified by dilution titration. RESULTS: IC50 values of the anti-epileptic drugs on the four glioma cell lines were far above clinically-relevant concentrations. At therapeutic concentrations, the anti-epileptics generally did not alter the infection efficiency of RGD-modified adenovirus, nor affect progeny production or oncolytic activity of Delta24-RGD. The only exception was found in U373 cells, where VPA slightly antagonised the oncolytic effect of Delta24-RGD (from 29% to 55% viability, p<0.01) as well as viral progeny production (60% decrease, p<0.01). Oncolysis by Delta24-RGD was not inhibited by the anti-epileptics in any of the patient-derived glioma cultures (n=6). In fact, in one culture a slight enhancement of viral oncolysis by PHE and LEV was found, from 89.7% viability to 76% and 62.4%, respectively (p<0.01) CONCLUSIONS: Therapeutic levels of valproic acid, phenytoin and levetiracetam do not negatively interfere with the infection efficiency or oncolytic activity of Delta24-RGD in patient-derived GBM cells. Therefore, there is no indication that the choice of anticonvulsant for seizure control in glioma patients should take treatment with Delta24-RGD into account.


Assuntos
Adenoviridae/efeitos dos fármacos , Anticonvulsivantes/farmacologia , Glioma/tratamento farmacológico , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Levetiracetam , Luciferases , Fenitoína , Piracetam/análogos & derivados , Ácido Valproico
15.
J Vet Dent ; 40(4): 329-337, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36974435

RESUMO

Treatment for oral tumors in dogs may involve aggressive surgery, radiation therapy, and/or chemotherapy. It is of utmost importance that veterinarians can document the good quality of life (QoL) for patients during and after cancer treatment. In this retrospective study, medical records from 2 private practices during a 10-year period (2011-2020) were searched to identify dogs with confirmed histopathological diagnosis of an oral tumor. Owners of dogs who underwent surgery received a questionnaire to assess their perception of QoL before and after surgery, clinical signs from the oral tumor, pain before and after surgery, physical appearance, and drinking and eating ability after surgery. Forty-two of 45 (93%) owners answered the questionnaire. Thirty-eight owners (90%) perceived that their dog had not changed its appearance after surgery after the hair had regrown. Thirty owners (71%) reported that their dog prehended food and water normally within 4 weeks after surgery. Forty owners (95%) perceived that their dog had more "good'' than ''bad'' days after surgery. Thirty-eight owners (90%) would choose the same treatment again. Our results strongly support that dog owners perceived that their dogs had good QoL after partial mandibulectomy or maxillectomy.


Assuntos
Doenças do Cão , Neoplasias Bucais , Humanos , Cães , Animais , Osteotomia Mandibular/veterinária , Qualidade de Vida , Estudos Retrospectivos , Neoplasias Bucais/cirurgia , Neoplasias Bucais/veterinária , Inquéritos e Questionários , Doenças do Cão/cirurgia , Doenças do Cão/patologia
16.
PLoS Negl Trop Dis ; 17(6): e0011249, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352363

RESUMO

The neglected tropical disease schistosomiasis impacts over 700 million people globally. Schistosoma mansoni, the trematode parasite that causes the most common type of schistosomiasis, requires planorbid pond snails of the genus Biomphalaria to support its larval development and transformation to the cercarial form that can infect humans. A greater understanding of neural signaling systems that are specific to the Biomphalaria intermediate host could lead to novel strategies for parasite or snail control. This study examined a Biomphalaria glabrata neural channel that is gated by the neuropeptide FMRF-NH2. The Biomphalaria glabrata FMRF-NH2 gated sodium channel (Bgl-FaNaC) amino acid sequence was highly conserved with FaNaCs found in related gastropods, especially the planorbid Planorbella trivolvis (91% sequence identity). In common with the P. trivolvis FaNaC, the B. glabrata channel exhibited a low affinity (EC50: 3 x 10-4 M) and high specificity for the FMRF-NH2 agonist. Its expression in the central nervous system, detected with immunohistochemistry and in situ hybridization, was widespread, with the protein localized mainly to neuronal fibers and the mRNA confined to cell bodies. Colocalization of the Bgl-FaNaC message with its FMRF-NH2 agonist precursor occurred in some neurons associated with male mating behavior. At the mRNA level, Bgl-FaNaC expression was decreased at 20 and 35 days post infection (dpi) by S. mansoni. Increased expression of the transcript encoding the FMRF-NH2 agonist at 35 dpi was proposed to reflect a compensatory response to decreased receptor levels. Altered FMRF-NH2 signaling could be vital for parasite proliferation in its intermediate host and may therefore present innovative opportunities for snail control.


Assuntos
Biomphalaria , Esquistossomose mansoni , Esquistossomose , Trematódeos , Animais , Masculino , Humanos , Schistosoma mansoni/fisiologia , Biomphalaria/parasitologia , FMRFamida , Esquistossomose/parasitologia , Sistema Nervoso Central , Esquistossomose mansoni/parasitologia , Interações Hospedeiro-Parasita/fisiologia
17.
Cancers (Basel) ; 14(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35158868

RESUMO

Despite clinical intervention, glioblastoma (GBM) remains the deadliest brain tumor in adults. Its incurability is partly related to the establishment of drug resistance, both to standard and novel treatments. In fact, even though small kinase inhibitors have changed the standard clinical practice for several solid cancers, in GBM, they did not fulfill this promise. Drug resistance is thought to arise from the heterogeneity of GBM, which leads the development of several different mechanisms. A better understanding of the evolution and characteristics of drug resistance is of utmost importance to improve the current clinical practice. Therefore, the development of clinically relevant preclinical in vitro models which allow careful dissection of these processes is crucial to gain insights that can be translated to improved therapeutic approaches. In this review, we first discuss the heterogeneity of GBM, which is reflected in the development of several resistance mechanisms. In particular, we address the potential role of drug resistance mechanisms in the failure of small kinase inhibitors in clinical trials. Finally, we discuss strategies to overcome therapy resistance, particularly focusing on the importance of developing in vitro models, and the possible approaches that could be applied to the clinic to manage drug resistance.

18.
Cancers (Basel) ; 14(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35954371

RESUMO

Glioblastoma (GBM) remains one of the most difficult tumors to treat. The mean overall survival rate of 15 months and the 5-year survival rate of 5% have not significantly changed for almost 2 decades. Despite progress in understanding the pathophysiology of the disease, no new effective treatments to combine with radiation therapy after surgical tumor debulking have become available since the introduction of temozolomide in 1999. One of the main reasons for this is the scarcity of compounds that cross the blood-brain barrier (BBB) and reach the brain tumor tissue in therapeutically effective concentrations. In this review, we focus on the role of the BBB and its importance in developing brain tumor treatments. Moreover, we discuss drug repurposing, a drug discovery approach to identify potential effective candidates with optimal pharmacokinetic profiles for central nervous system (CNS) penetration and that allows rapid implementation in clinical trials. Additionally, we provide an overview of repurposed candidate drug currently being investigated in GBM at the preclinical and clinical levels. Finally, we highlight the importance of phase 0 trials to confirm tumor drug exposure and we discuss emerging drug delivery technologies as an alternative route to maximize therapeutic efficacy of repurposed candidate drug.

19.
ACS Omega ; 7(4): 3568-3578, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35128264

RESUMO

The R132H mutation in the metabolic enzyme isocitrate dehydrogenase 1 (IDH1) is the most important prognostic factor for the survival of glioma patients. Subsequent studies led to the discovery of a panel of enzymes mainly involved in glutamate anaplerosis and aerobic glycolysis that change in abundance as a result of the IDH1 mutation. To further study these changes, appropriate glioma models are required that accurately mimic in vivo metabolism. To investigate how metabolism is affected by in vitro cell culture, we here compared surgically obtained snap-frozen glioma tissues with their corresponding primary glioma cell culture models with a previously developed targeted mass spectrometry proteomic assay. We determined the relative abundance of a panel of metabolic enzymes. Results confirmed increased glutamate use and decreased aerobic glycolysis in resected IDH1 R132H glioma tissue samples. However, these metabolic profiles were not reflected in the paired glioma primary cell cultures. We suggest that culture conditions and tumor microenvironment play a crucial role in maintaining the in vivo metabolic situation in cell culture models. For this reason, new models that more closely resemble the in vivo microenvironment, such as three-dimensional cell co-cultures or organotypic multicellular spheroid models, need to be developed and investigated.

20.
Front Oncol ; 12: 1012236, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408180

RESUMO

Glioblastoma is the deadliest brain cancer. One of the main reasons for poor outcome resides in therapy resistance, which adds additional challenges in finding an effective treatment. Small protein kinase inhibitors are molecules that have become widely studied for cancer treatments, including glioblastoma. However, none of these drugs have demonstrated a therapeutic activity or brought more benefit compared to the current standard procedure in clinical trials. Hence, understanding the reasons of the limited efficacy and drug resistance is valuable to develop more effective strategies toward the future. To gain novel insights into the method of action and drug resistance in glioblastoma, we established in parallel two patient-derived glioblastoma 2D and 3D organotypic multicellular spheroids models, and exposed them to a prolonged treatment of three weeks with temozolomide or either the two small protein kinase inhibitors enzastaurin and imatinib. We coupled the phenotypic evidence of cytotoxicity, proliferation, and migration to a novel kinase activity profiling platform (QuantaKinome™) that measured the activities of the intracellular network of kinases affected by the drug treatments. The results revealed a heterogeneous inter-patient phenotypic and molecular response to the different drugs. In general, small differences in kinase activation were observed, suggesting an intrinsic low influence of the drugs to the fundamental cellular processes like proliferation and migration. The pathway analysis indicated that many of the endogenously detected kinases were associated with the ErbB signaling pathway. We showed the intertumoral variability in drug responses, both in terms of efficacy and resistance, indicating the importance of pursuing a more personalized approach. In addition, we observed the influence derived from the application of 2D or 3D models in in vitro studies of kinases involved in the ErbB signaling pathway. We identified in one 3D sample a new resistance mechanism derived from imatinib treatment that results in a more invasive behavior. The present study applied a new approach to detect unique and specific drug effects associated with pathways in in vitro screening of compounds, to foster future drug development strategies for clinical research in glioblastoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA