Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 19(6): 3981-3986, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31059646

RESUMO

The gating of nanocrystal films is currently driven by two approaches: either the use of a dielectric such as SiO2 or the use of electrolyte. SiO2 allows fast bias sweeping over a broad range of temperatures but requires a large operating bias. Electrolytes, thanks to large capacitances, lead to the significant reduction of operating bias but are limited to slow and quasi-room-temperature operation. None of these operating conditions are optimal for narrow-band-gap nanocrystal-based phototransistors, for which the necessary large-capacitance gate has to be combined with low-temperature operation. Here, we explore the use of a LaF3 ionic glass as a high-capacitance gating alternative. We demonstrate for the first time the use of such ionic glasses to gate thin films made of HgTe and PbS nanocrystals. This gating strategy allows operation in the 180 to 300 K range of temperatures with capacitance as high as 1 µF·cm-2. We unveil the unique property of ionic glass gate to enable the unprecedented tunability of both magnitude and dynamics of the photocurrent thanks to high charge-doping capability within an operating temperature window relevant for infrared photodetection. We demonstrate that by carefully choosing the operating gate bias, the signal-to-noise ratio can be improved by a factor of 100 and the time response accelerated by a factor of 6. Moreover, the good transparency of LaF3 substrate allows back-side illumination in the infrared range, which is highly valuable for the design of phototransistors.

2.
Nano Lett ; 18(7): 4590-4597, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29812951

RESUMO

The use of intraband transition is an interesting alternative path for the design of optically active complex colloidal materials in the mid-infrared range. However, so far, the performance obtained for photodetection based on intraband transition remains much smaller than the one relying on interband transition in narrow-band-gap materials operating at the same wavelength. New strategies have to be developed to make intraband materials more effective. Here, we propose growing a heterostructure of HgSe/HgTe as a means of achieving enhanced intraband-based photoconduction. We first tackle the synthetic challenge of growing a heterostructure on soft (Hg-based) material. The electronic spectrum of the grown heterostructure is then investigated using a combination of numerical simulation, infrared spectroscopy, transport measurement, and photoemission. We report a type-II band alignment with reduced doping compared with a core-only object and boosted hole conduction. Finally, we probe the photoconductive properties of the heterostructure while resonantly exciting the intraband transition by using a high-power-density quantum cascade laser. Compared to the previous generation of material based on core-only HgSe, the heterostructures have a lower dark current, stronger temperature dependence, faster photoresponse (with a time response below 50 µs), and detectivity increased by a factor of 30.

3.
J Am Chem Soc ; 140(15): 5033-5036, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29617124

RESUMO

We report the synthesis of nanocrystals with an optical feature in the THz range. To do so, we develop a new synthetic procedure for the growth of HgTe, HgSe, and HgS nanocrystals, with strong size tunability from 5 to 200 nm. This is used to tune the absorption of the nanocrystals all over the infrared range up to terahertz (from 2 to 65 µm for absorption peak and even 200 µm for cutoff wavelength). The interest for this procedure is not limited to large sizes since for small objects we demonstrate low aggregation and good shape control (i.e., spherical object) while using nonexpansive and simple mercury halogenide precursors. By integrating these nanocrystals into an electrolyte-gated transistor, we evidence a change of carrier density from p-doped to n-doped as the confinement is vanishing.

4.
Nano Lett ; 17(7): 4067-4074, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28598629

RESUMO

We investigate the electronic and transport properties of HgTe 2D colloidal quantum wells. We demonstrate that the material can be made p- or n-type depending on the capping ligands. In addition to the control of majority carrier type, the surface chemistry also strongly affects the photoconductivity of the material. These transport measurements are correlated with the electronic structure determined by high resolution X-ray photoemission. We attribute the change of majority carriers to the strong hybridization of an n-doped HgS layer resulting from capping the HgTe nanoplatelets by S2- ions. We further investigate the gate and temperature dependence of the photoresponse and its dynamics. We show that the photocurrent rise and fall times can be tuned from 100 µs to 1 ms using the gate bias. Finally, we use time-resolved photoemission spectroscopy as a probe of the transport relaxation to determine if the observed dynamics are limited by a fundamental process such as trapping. These pump probe surface photovoltage measurements show an even faster relaxation in the 100-500 ns range, which suggests that the current performances are rather limited by geometrical factors.

5.
ACS Appl Mater Interfaces ; 11(10): 10128-10134, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30777752

RESUMO

Among colloidal nanocrystals, 2D nanoplatelets (NPLs) made of II-VI compounds appear as a special class of emitters with an especially narrow photoluminescence signal. However, the PL signal in the case of NPLs is only tunable by a discrete step. Here, we demonstrate that doping is a viable path to finely tune the color of these NPLs from green to red, making them extremely interesting as phosphors for wide-gamut display. In addition, using a combination of luminescence spectroscopy, tight-binding simulation, transport, and photoemission, we provide a consistent picture for the Ag+-doped CdSe NPLs. The Ag-activated state is strongly bound and located 340 meV above the valence band of the bulk material. The Ag dopant induces a relative shift of the Fermi level toward the valence band by up to 400 meV but preserves the n-type nature of the material.

6.
ACS Appl Mater Interfaces ; 11(36): 33116-33123, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31426628

RESUMO

Infrared applications remain too often a niche market due to their prohibitive cost. Nanocrystals offer an interesting alternative to reach cost disruption especially in the short-wave infrared (SWIR, λ < 1.7 µm) where material maturity is now high. Two families of materials are candidate for SWIR photoconduction: lead and mercury chalcogenides. Lead sulfide typically benefits from all the development made for a wider band gap such as the one made for solar cells, while HgTe takes advantage of the development relative to mid-wave infrared detectors. Here, we make a fair comparison of the two material detection properties in the SWIR and discuss the material stability. At such wavelengths, studies have been mostly focused on PbS rather than on HgTe, therefore we focus in the last part of the discussion on the effect of surface chemistry on the electronic spectrum of HgTe nanocrystals. We unveil that tuning the capping ligands is a viable strategy to adjust the material from the p-type to ambipolar. Finally, HgTe nanocrystals are integrated into multipixel devices to quantize spatial homogeneity and onto read-out circuits to obtain a fast and sensitive infrared laser beam profile.

7.
Nat Commun ; 10(1): 2125, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31073132

RESUMO

Wavefunction engineering using intraband transition is the most versatile strategy for the design of infrared devices. To date, this strategy is nevertheless limited to epitaxially grown semiconductors, which lead to prohibitive costs for many applications. Meanwhile, colloidal nanocrystals have gained a high level of maturity from a material perspective and now achieve a broad spectral tunability. Here, we demonstrate that the energy landscape of quantum well and quantum dot infrared photodetectors can be mimicked from a mixture of mercury selenide and mercury telluride nanocrystals. This metamaterial combines intraband absorption with enhanced transport properties (i.e. low dark current, fast time response and large thermal activation energy). We also integrate this material into a photodiode with the highest infrared detection performances reported for an intraband-based nanocrystal device. This work demonstrates that the concept of wavefunction engineering at the device scale can now be applied for the design of complex colloidal nanocrystal-based devices.

8.
Nanoscale ; 11(9): 3905-3915, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30758021

RESUMO

We demonstrate the growth of 2D nanoplatelets (NPLs) made of a HgTe/CdS heterostructure, with an optical absorption reaching the shortwave infrared range. The material is an interesting platform to investigate the effect of dimensionality (0D vs. 2D) and confinement on the electronic spectrum and carrier dynamics in colloidal materials. We bring consistent evidence for the p-type nature of this material from transport and photoemission measurements. The majority carrier dynamics probed using pump-probe photoemission is found to be mostly dependent on the presence of a confinement barrier at the surface rather than on the material dimensionality. The minority carrier, on the other hand, is strongly affected by the material shape showing a longer lived minority carrier in 2D NPLs compared to their 0D equivalent with a similar band gap. Finally, we test the potential of this material for photodetection in the short-wave infrared range (SWIR) and show that fast photoresponse and detectivity reaching 109 Jones at room temperature can be achieved.

9.
Front Chem ; 6: 575, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30547026

RESUMO

Infrared (IR) sensors based on epitaxially grown semiconductors face two main challenges which are their prohibitive cost and the difficulty to rise the operating temperature. The quest for alternative technologies which will tackle these two difficulties requires the development of new IR active materials. Over the past decade, significant progresses have been achieved. In this perspective, we summarize the current state of the art relative to nanocrystal based IR sensing and stress the main materials, devices and industrial challenges which will have to be addressed over the 5 next years.

10.
ACS Appl Mater Interfaces ; 10(14): 11880-11887, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29578678

RESUMO

Mercury chalcogenide nanocrystals and especially HgTe appear as an interesting platform for the design of low cost mid-infrared (mid-IR) detectors. Nevertheless, their electronic structure and transport properties remain poorly understood, and some critical aspects such as the carrier relaxation dynamics at the band edge have been pushed under the rug. Some of the previous reports on dynamics are setup-limited, and all of them have been obtained using photon energy far above the band edge. These observations raise two main questions: (i) what are the carrier dynamics at the band edge and (ii) should we expect some additional effect (multiexciton generation (MEG)) as such narrow band gap materials are excited far above the band edge? To answer these questions, we developed a high-bandwidth setup that allows us to understand and compare the carrier dynamics resonantly pumped at the band edge in the mid-IR and far above the band edge. We demonstrate that fast (>50 MHz) photoresponse can be obtained even in the mid-IR and that MEG is occurring in HgTe nanocrystal arrays with a threshold around 3 times the band edge energy. Furthermore, the photoresponse can be effectively tuned in magnitude and sign using a phototransistor configuration.

11.
Sci Rep ; 7(1): 9647, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28852056

RESUMO

We investigate the potential use of colloidal nanoplates of Sb2Te3 by conducting transport on single particle with in mind their potential use as 3D topological insulator material. We develop a synthetic procedure for the growth of plates with large lateral extension and probe their infrared optical and transport properties. These two properties are used as probe for the determination of the bulk carrier density and agree on a value in the 2-3 × 1019 cm-3 range. Such value is compatible with the metallic side of the Mott criterion which is also confirmed by the weak thermal dependence of the conductance. By investigating the transport at the single particle level we demonstrate that the hole mobility in this system is around 40 cm2V-1s-1. For the bulk material mixing n-type Bi2Te3 with the p-type Sb2Te3 has been a successful way to control the carrier density. Here we apply this approach to the case of colloidally obtained nanoplates by growing a core-shell heterostructure of Sb2Te3/Bi2Te3 and demonstrates a reduction of the carrier density by a factor 2.5.

12.
ACS Appl Mater Interfaces ; 9(41): 36173-36180, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28956432

RESUMO

Self-doped colloidal quantum dots (CQDs) attract a strong interest for the design of a new generation of low-cost infrared (IR) optoelectronic devices because of their tunable intraband absorption feature in the mid-IR region. However, very little remains known about their electronic structure which combines confinement and an inverted band structure, complicating the design of optimized devices. We use a combination of IR spectroscopy and photoemission to determine the absolute energy levels of HgSe CQDs with various sizes and surface chemistries. We demonstrate that the filling of the CQD states ranges from 2 electrons per CQD at small sizes (<5 nm) to more than 18 electrons per CQD at large sizes (≈20 nm). HgSe CQDs are also an interesting platform to observe vanishing confinement in colloidal nanoparticles. We present lines of evidence for a semiconductor-to-metal transition at the CQD level, through temperature-dependent absorption and transport measurements. In contrast with bulk systems, the transition is the result of the vanishing confinement rather than the increase of the doping level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA