Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Mol Syst Biol ; 20(6): 719-740, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38580884

RESUMO

Tumor suppressor p53 (TP53) is frequently mutated in cancer, often resulting not only in loss of its tumor-suppressive function but also acquisition of dominant-negative and even oncogenic gain-of-function traits. While wild-type p53 levels are tightly regulated, mutants are typically stabilized in tumors, which is crucial for their oncogenic properties. Here, we systematically profiled the factors that regulate protein stability of wild-type and mutant p53 using marker-based genome-wide CRISPR screens. Most regulators of wild-type p53 also regulate p53 mutants, except for p53 R337H regulators, which are largely private to this mutant. Mechanistically, FBXO42 emerged as a positive regulator for a subset of p53 mutants, working with CCDC6 to control USP28-mediated mutant p53 stabilization. Additionally, C16orf72/HAPSTR1 negatively regulates both wild-type p53 and all tested mutants. C16orf72/HAPSTR1 is commonly amplified in breast cancer, and its overexpression reduces p53 levels in mouse mammary epithelium leading to accelerated breast cancer. This study offers a network perspective on p53 stability regulation, potentially guiding strategies to reinforce wild-type p53 or target mutant p53 in cancer.


Assuntos
Mutação , Estabilidade Proteica , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Humanos , Camundongos , Feminino , Sistemas CRISPR-Cas , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Regulação Neoplásica da Expressão Gênica , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
2.
Proc Natl Acad Sci U S A ; 119(17): e2119644119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35439056

RESUMO

Missense mutations in the p53 tumor suppressor abound in human cancer. Common ("hotspot") mutations endow mutant p53 (mutp53) proteins with oncogenic gain of function (GOF), including enhanced cell migration and invasiveness, favoring cancer progression. GOF is usually attributed to transcriptional effects of mutp53. To elucidate transcription-independent effects of mutp53, we characterized the protein interactome of the p53R273H mutant in cells derived from pancreatic ductal adenocarcinoma (PDAC), where p53R273H is the most frequent p53 mutant. We now report that p53R273H, but not the p53R175H hotspot mutant, interacts with SQSTM1/p62 and promotes cancer cell migration and invasion in a p62-dependent manner. Mechanistically, the p53R273H-p62 axis drives the proteasomal degradation of several cell junction­associated proteins, including the gap junction protein Connexin 43, facilitating scattered cell migration. Concordantly, down-regulation of Connexin 43 augments PDAC cell migration, while its forced overexpression blunts the promigratory effect of the p53R273H-p62 axis. These findings define a mechanism of mutp53 GOF.


Assuntos
Movimento Celular , Neoplasias Pancreáticas , Proteína Supressora de Tumor p53 , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Genes p53 , Humanos , Mutação , Neoplasias Pancreáticas/genética , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
3.
Int J Mol Sci ; 25(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39201539

RESUMO

Breast cancer is the most common cancer diagnosed in women worldwide. Early-stage breast cancer is curable in ~70-80% of patients, while advanced metastatic breast cancer is considered incurable with current therapies. Breast cancer is a highly heterogeneous disease categorized into three main subtypes based on key markers orientating specific treatment strategies for each subtype. The complexity of breast carcinogenesis is often associated with epigenetic modification regulating different signaling pathways, involved in breast tumor initiation and progression, particularly by the methylation of arginine residues. Protein arginine methyltransferases (PRMT1-9) have emerged, through their ability to methylate histones and non-histone substrates, as essential regulators of cancers. Here, we present an updated overview of the mechanisms by which PRMT1 and PRMT5, two major members of the PRMT family, control important signaling pathways impacting breast tumorigenesis, highlighting them as putative therapeutic targets.


Assuntos
Neoplasias da Mama , Proteína-Arginina N-Metiltransferases , Proteínas Repressoras , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais , Metilação , Epigênese Genética , Animais , Regulação Neoplásica da Expressão Gênica
4.
J Exp Bot ; 72(5): 1933-1945, 2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33249486

RESUMO

Photosynthetic carbon assimilation rates are highly dependent on environmental factors such as light availability and on metabolic limitations such as the demand for carbon by sink organs. The relative effects of light and sink demand on photosynthesis in perennial plants such as trees remain poorly characterized. The aim of the present study was therefore to characterize the relationships between light and fruit load on a range of leaf traits including photosynthesis, non-structural carbohydrate content, leaf structure, and nitrogen-related variables in fruiting ('ON') and non-fruiting ('OFF') 'Golden Delicious' apple trees. We show that crop status (at the tree scale) exerts a greater influence over leaf traits than the local light environment or the local fruit load. High rates of photosynthesis were observed in the ON trees. This was correlated with a high leaf nitrogen content. In contrast, little spatial variability in photosynthesis rates was observed in the OFF trees. The lack of variation in photosynthesis rates was associated with high leaf non-structural carbohydrate content at the tree level. Taken together, these results suggest that low carbon demand leads to feedback limitation on photosynthesis resulting in a low level of within-tree variability. These findings provide new insights into carbon and nitrogen allocations within trees, which are heavily dependent on carbon demand.


Assuntos
Malus , Carbono , Frutas , Nitrogênio , Fotossíntese , Folhas de Planta
5.
Ann Bot ; 123(5): 877-890, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-30596816

RESUMO

BACKGROUND AND AIMS: Depending on the species, water stress affects different growth and developmental processes, mainly due to changes in hydraulic properties and hormonal signalling. This study compared the impact of water stress on tree development and organ growth in three apple cultivars. METHODS: Trees were differentially irrigated to induce water stress or to provide well-watered conditions in their second and third years of growth. Effects of water stress were evaluated at tree scale by shoot number and proportions of the different types of shoots, and at shoot scale by metamer appearance rate, growth duration and arrest time, as well as organ size. KEY RESULTS: Water stress promoted early growth cessation, prolonged summer arrests and decreased growth resumptions, thus modifying within-tree shoot demography in favour of short shoots. Growth cessations occurred in mild water stress conditions before any difference in stem water potential appeared. No major impact was observed on organ size. Consistently with tree ontogeny, the number of shoots that resumed growth after summer arrest decreased with years, but more in water-stressed than well-watered conditions. CONCLUSIONS: Even though the impact of water stress differed slightly among cultivars, the reduction in neoformation and increase in summer arrest played a common role in apple tree morphological responses and led to stress avoidance by early reduction of tree leaf area.


Assuntos
Adaptação Biológica , Malus/fisiologia , Árvores/fisiologia , Água/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Especificidade da Espécie
6.
J Biol Chem ; 290(51): 30562-72, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26499793

RESUMO

The non-canonical WNT/planar cell polarity (WNT/PCP) pathway plays important roles in morphogenetic processes in vertebrates. Among WNT/PCP components, protein tyrosine kinase 7 (PTK7) is a tyrosine kinase receptor with poorly defined functions lacking catalytic activity. Here we show that PTK7 associates with receptor tyrosine kinase-like orphan receptor 2 (ROR2) to form a heterodimeric complex in mammalian cells. We demonstrate that PTK7 and ROR2 physically and functionally interact with the non-canonical WNT5A ligand, leading to JNK activation and cell movements. In the Xenopus embryo, Ptk7 functionally interacts with Ror2 to regulate protocadherin papc expression and morphogenesis. Furthermore, we show that Ptk7 is required for papc activation induced by Wnt5a. Interestingly, we find that Wnt5a stimulates the release of the tagged Ptk7 intracellular domain, which can translocate into the nucleus and activate papc expression. This study reveals novel molecular mechanisms of action of PTK7 in non-canonical WNT/PCP signaling that may promote cell and tissue movements.


Assuntos
Núcleo Celular/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Via de Sinalização Wnt/fisiologia , Proteínas de Xenopus/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Caderinas/biossíntese , Caderinas/genética , Núcleo Celular/genética , Embrião não Mamífero/metabolismo , Células HEK293 , Humanos , Morfogênese/fisiologia , Protocaderinas , Receptores Proteína Tirosina Quinases/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a , Proteínas de Xenopus/biossíntese , Proteínas de Xenopus/genética , Xenopus laevis
7.
J Exp Bot ; 67(9): 2875-88, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27034326

RESUMO

In temperate trees, growth resumption in spring time results from chilling and heat requirements, and is an adaptive trait under global warming. Here, the genetic determinism of budbreak and flowering time was deciphered using five related full-sib apple families. Both traits were observed over 3 years and two sites and expressed in calendar and degree-days. Best linear unbiased predictors of genotypic effect or interaction with climatic year were extracted from mixed linear models and used for quantitative trait locus (QTL) mapping, performed with an integrated genetic map containing 6849 single nucleotide polymorphisms (SNPs), grouped into haplotypes, and with a Bayesian pedigree-based analysis. Four major regions, on linkage group (LG) 7, LG10, LG12, and LG9, the latter being the most stable across families, sites, and years, explained 5.6-21.3% of trait variance. Co-localizations for traits in calendar days or growing degree hours (GDH) suggested common genetic determinism for chilling and heating requirements. Homologs of two major flowering genes, AGL24 and FT, were predicted close to LG9 and LG12 QTLs, respectively, whereas Dormancy Associated MADs-box (DAM) genes were near additional QTLs on LG8 and LG15. This suggests that chilling perception mechanisms could be common among perennial and annual plants. Progenitors with favorable alleles depending on trait and LG were identified and could benefit new breeding strategies for apple adaptation to temperature increase.


Assuntos
Flores/crescimento & desenvolvimento , Genes de Plantas/genética , Malus/genética , Flores/genética , Genes de Plantas/fisiologia , Haplótipos/genética , Malus/crescimento & desenvolvimento , Malus/fisiologia , Linhagem , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas
8.
J Exp Bot ; 66(18): 5453-65, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26208644

RESUMO

Genetic studies of response to water deficit in adult trees are limited by low throughput of the usual phenotyping methods in the field. Here, we aimed at overcoming this bottleneck, applying a new methodology using airborne multispectral imagery and in planta measurements to compare a high number of individuals.An apple tree population, grafted on the same rootstock, was submitted to contrasting summer water regimes over two years. Aerial images acquired in visible, near- and thermal-infrared at three dates each year allowed calculation of vegetation and water stress indices. Tree vigour and fruit production were also assessed. Linear mixed models were built accounting for date and year effects on several variables and including the differential response of genotypes between control and drought conditions.Broad-sense heritability of most variables was high and 18 quantitative trait loci (QTLs) independent of the dates were detected on nine linkage groups of the consensus apple genetic map. For vegetation and stress indices, QTLs were related to the means, the intra-crown heterogeneity, and differences induced by water regimes. Most QTLs explained 15-20% of variance.Airborne multispectral imaging proved relevant to acquire simultaneous information on a whole tree population and to decipher genetic determinisms involved in response to water deficit.


Assuntos
Secas , Malus/fisiologia , Fenótipo , Transpiração Vegetal , Tecnologia de Sensoriamento Remoto/métodos , Frutas/crescimento & desenvolvimento , Ligação Genética , Malus/anatomia & histologia , Malus/genética , Locos de Características Quantitativas , Estações do Ano , Árvores/anatomia & histologia , Árvores/genética , Árvores/fisiologia , Água/metabolismo
9.
J Exp Bot ; 65(18): 5429-42, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25080086

RESUMO

As field phenotyping of plant response to water constraints constitutes a bottleneck for breeding programmes, airborne thermal imagery can contribute to assessing the water status of a wide range of individuals simultaneously. However, the presence of mixed soil-plant pixels in heterogeneous plant cover complicates the interpretation of canopy temperature. Moran's Water Deficit Index (WDI = 1-ETact/ETmax), which was designed to overcome this difficulty, was compared with surface minus air temperature (T s-T a) as a water stress indicator. As parameterization of the theoretical equations for WDI computation is difficult, particularly when applied to genotypes with large architectural variability, a simplified procedure based on quantile regression was proposed to delineate the Vegetation Index-Temperature (VIT) scatterplot. The sensitivity of WDI to variations in wet and dry references was assessed by applying more or less stringent quantile levels. The different stress indicators tested on a series of airborne multispectral images (RGB, near-infrared, and thermal infrared) of a population of 122 apple hybrids, under two irrigation regimes, significantly discriminated the tree water statuses. For each acquisition date, the statistical method efficiently delineated the VIT scatterplot, while the limits obtained using the theoretical approach overlapped it, leading to inconsistent WDI values. Once water constraint was established, the different stress indicators were linearly correlated to the stem water potential among a tree subset. T s-T a showed a strong sensitivity to evaporative demand, which limited its relevancy for temporal comparisons. Finally, the statistical approach of WDI appeared the most suitable for high-throughput phenotyping.


Assuntos
Árvores/fisiologia , Secas , Temperatura
10.
Nat Commun ; 15(1): 5266, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902237

RESUMO

Functionally characterizing the genetic alterations that drive pancreatic cancer is a prerequisite for precision medicine. Here, we perform somatic CRISPR/Cas9 mutagenesis screens to assess the transforming potential of 125 recurrently mutated pancreatic cancer genes, which revealed USP15 and SCAF1 as pancreatic tumor suppressors. Mechanistically, we find that USP15 functions in a haploinsufficient manner and that loss of USP15 or SCAF1 leads to reduced inflammatory TNFα, TGF-ß and IL6 responses and increased sensitivity to PARP inhibition and Gemcitabine. Furthermore, we find that loss of SCAF1 leads to the formation of a truncated, inactive USP15 isoform at the expense of full-length USP15, functionally coupling SCAF1 and USP15. Notably, USP15 and SCAF1 alterations are observed in 31% of pancreatic cancer patients. Our results highlight the utility of in vivo CRISPR screens to integrate human cancer genomics and mouse modeling for the discovery of cancer driver genes with potential prognostic and therapeutic implications.


Assuntos
Sistemas CRISPR-Cas , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Gencitabina , Regulação Neoplásica da Expressão Gênica , Mutação , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo
11.
Nat Commun ; 14(1): 3150, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258521

RESUMO

How the genetic landscape governs a tumor's response to immunotherapy remains poorly understood. To assess the immune-modulatory capabilities of 573 genes associated with altered cytotoxicity in human cancers, here we perform CRISPR/Cas9 screens directly in mouse lung cancer models. We recover the known immune evasion factors Stat1 and Serpinb9 and identify the cancer testis antigen Adam2 as an immune modulator, whose expression is induced by KrasG12D and further elevated by immunotherapy. Using loss- and gain-of-function experiments, we show that ADAM2 functions as an oncogene by restraining interferon and TNF cytokine signaling causing reduced presentation of tumor-associated antigens. ADAM2 also restricts expression of the immune checkpoint inhibitors PDL1, LAG3, TIGIT and TIM3 in the tumor microenvironment, which might explain why ex vivo expanded and adoptively transferred cytotoxic T-cells show enhanced cytotoxic efficacy in ADAM2 overexpressing tumors. Together, direct in vivo CRISPR/Cas9 screens can uncover genetic alterations that control responses to immunotherapies.


Assuntos
Antineoplásicos , Fertilinas , Neoplasias Pulmonares , Serpinas , Animais , Humanos , Masculino , Camundongos , Antígenos de Neoplasias , Fertilinas/genética , Imunoterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Proteínas de Membrana/genética , Serpinas/genética , Linfócitos T Citotóxicos , Microambiente Tumoral
12.
Tree Physiol ; 42(11): 2306-2318, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-35951430

RESUMO

In polycarpic plants, meristem fate varies within individuals in a given year. In perennials, the proportion of floral induction (FI) in meristems also varies between consecutive years and among genotypes of a given species. Previous studies have suggested that FI of meristems could be determined by the within-plant competition for carbohydrates and by hormone signaling as key components of the flowering pathway. At the genotypic level, variability in FI was also associated with variability in architectural traits. However, the part of genotype-dependent variability in FI that can be explained by either tree architecture or tree physiology is still not fully understood. This study aimed at deciphering the respective effect of architectural and physiological traits on FI variability within apple trees by comparing six genotypes with contrasted architectures. Shoot type demography as well as the flowering and fruit production patterns were followed over 6 years and characterized by different indexes. Architectural morphotypes were then defined based on architectural traits using a clustering approach. For two successive years, non-structural starch content in leaf, stem and meristems, and hormonal contents (gibberellins, cytokinins, auxin and abscisic acid) in meristems were quantified and correlated to FI within-tree proportions. Based on a multi-step regression analysis, cytokinins and gibberellins content in meristem, starch content in leaves and the proportion of long shoots in tree annual growth were shown to contribute to FI. Although the predictive linear model of FI was common to all genotypes, each of the explicative variables had a different weight in FI determination, depending on the genotype. Our results therefore suggest both a common determination model and a genotype-specific architectural and physiological profile linked to its flowering behavior.


Assuntos
Malus , Malus/metabolismo , Giberelinas/metabolismo , Citocininas/metabolismo , Árvores , Genótipo , Amido/metabolismo , Flores
13.
Sci Signal ; 15(745): eabg8191, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35917363

RESUMO

In pancreatic ductal adenocarcinoma (PDAC), signaling from stromal cells is implicated in metastatic progression. Tumor-stroma cross-talk is often mediated through extracellular vesicles (EVs). We previously reported that EVs derived from cancer-associated stromal fibroblasts (CAFs) that are abundant in annexin A6 (ANXA6+ EVs) support tumor cell aggressiveness in PDAC. Here, we found that the cell surface glycoprotein and tetraspanin CD9 is a key component of CAF-derived ANXA6+ EVs for mediating this cross-talk. CD9 was abundant on the surface of ANXA6+ CAFs isolated from patient PDAC samples and from various mouse models of PDAC. CD9 colocalized with CAF markers in the tumor stroma, and CD9 abundance correlated with tumor stage. Blocking CD9 impaired the uptake of ANXA6+ EVs into cultured PDAC cells. Signaling pathway arrays and further analyses revealed that the uptake of CD9+ANXA6+ EVs induced mitogen-activated protein kinase (MAPK) pathway activity, cell migration, and epithelial-to-mesenchymal transition (EMT). Blocking either CD9 or p38 MAPK signaling impaired CD9+ANXA6+ EV-induced cell migration and EMT in PDAC cells. Analysis of bioinformatic datasets indicated that CD9 abundance was an independent marker of poor prognosis in patients with PDAC. Our findings suggest that CD9-mediated stromal cell signaling promotes PDAC progression.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Vesículas Extracelulares , Neoplasias Pancreáticas , Animais , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Vesículas Extracelulares/metabolismo , Camundongos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas
14.
Plant Cell Environ ; 34(8): 1276-90, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21477120

RESUMO

The apple tree is known to have an isohydric behaviour, maintaining rather constant leaf water potential in soil with low water status and/or under high evaporative demand. However, little is known on the xylem water transport from roots to leaves from the two perspectives of efficiency and safety, and on its genetic variability. We analysed 16 traits related to hydraulic efficiency and safety, and anatomical traits in apple stems, and the relationships between them. Most variables were found heritable, and we investigated the determinism underlying their genetic control through a quantitative trait loci (QTL) analysis on 90 genotypes from the same progeny. Principal component analysis (PCA) revealed that all traits related to efficiency, whether hydraulic conductivity, vessel number and area or wood area, were included in the first PC, whereas the second PC included the safety variables, thus confirming the absence of trade-off between these two sets of traits. Our results demonstrated that clustered variables were characterized by common genomic regions. Together with previous results on the same progeny, our study substantiated that hydraulic efficiency traits co-localized with traits identified for tree growth and fruit production.


Assuntos
Malus/genética , Transporte Biológico , Fenômenos Biofísicos , Genoma de Planta , Genótipo , Malus/anatomia & histologia , Caules de Planta/anatomia & histologia , Caules de Planta/genética , Análise de Componente Principal , Locos de Características Quantitativas , Característica Quantitativa Herdável , Árvores/anatomia & histologia , Árvores/genética , Água , Xilema
15.
Sci Rep ; 10(1): 13085, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753623

RESUMO

Floral induction (FI) in shoot apical meristems (SAM) is assumed to be triggered by antagonistic endogenous signals. In fruit trees, FI occurs in some SAM only and is determined by activating and inhibiting signals originating from leaves and fruit, respectively. We developed a model (SigFlow) to quantify on 3D structures the combined impact of such signals and distances at which they act on SAM. Signal transport was simulated considering a signal 'attenuation' parameter, whereas SAM fate was determined by probability functions depending on signal quantities. Model behaviour was assessed on simple structures before being calibrated and validated on a unique experimental dataset of 3D digitized apple trees with contrasted crop loads and subjected to leaf and fruit removal at different scales of tree organization. Model parameter estimations and comparisons of two signal combination functions led us to formulate new assumptions on the mechanisms involved: (i) the activating signal could be transported at shorter distances than the inhibiting one (roughly 50 cm vs 1 m) (ii) both signals jointly act to determine FI with SAM being more sensitive to inhibiting signal than activating one. Finally, the genericity of the model is promising to further understand the physiological and architectural determinisms of FI in plants.


Assuntos
Malus/citologia , Malus/metabolismo , Modelos Biológicos , Transdução de Sinais , Transporte Biológico , Malus/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento
16.
Science ; 370(6514): 351-356, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33060361

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) couples nutrient sufficiency to cell growth. mTORC1 is activated by exogenously acquired amino acids sensed through the GATOR-Rag guanosine triphosphatase (GTPase) pathway, or by amino acids derived through lysosomal degradation of protein by a poorly defined mechanism. Here, we revealed that amino acids derived from the degradation of protein (acquired through oncogenic Ras-driven macropinocytosis) activate mTORC1 by a Rag GTPase-independent mechanism. mTORC1 stimulation through this pathway required the HOPS complex and was negatively regulated by activation of the GATOR-Rag GTPase pathway. Therefore, distinct but functionally coordinated pathways control mTORC1 activity on late endocytic organelles in response to distinct sources of amino acids.


Assuntos
Aminoácidos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Lisossomos/enzimologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas R-SNARE/metabolismo , Ativação Enzimática , Células HEK293 , Humanos , Pinocitose , Proteólise
17.
Hortic Res ; 6: 52, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31044079

RESUMO

Despite previous reports on the genotypic variation of architectural and functional traits in fruit trees, phenotyping large populations in the field remains challenging. In this study, we used high-throughput phenotyping methods on an apple tree core-collection (1000 individuals) grown under contrasted watering regimes. First, architectural phenotyping was achieved using T-LiDAR scans for estimating convex and alpha hull volumes and the silhouette to total leaf area ratio (STAR). Second, a semi-empirical index (I PL) was computed from chlorophyll fluorescence measurements, as a proxy for leaf photosynthesis. Last, thermal infrared and multispectral airborne imaging was used for computing canopy temperature variations, water deficit, and vegetation indices. All traits estimated by these methods were compared to low-throughput in planta measurements. Vegetation indices and alpha hull volumes were significantly correlated with tree leaf area and trunk cross sectional area, while I PL values showed strong correlations with photosynthesis measurements collected on an independent leaf dataset. By contrast, correlations between stomatal conductance and canopy temperature estimated from airborne images were lower, emphasizing discrepancies across measurement scales. High heritability values were obtained for almost all the traits except leaf photosynthesis, likely due to large intra-tree variation. Genotypic means were used in a clustering procedure that defined six classes of architectural and functional combinations. Differences between groups showed several combinations between architectural and functional traits, suggesting independent genetic controls. This study demonstrates the feasibility and relevance of combining multi-scale high-throughput methods and paves the way to explore the genetic bases of architectural and functional variations in woody crops in field conditions.

18.
Front Plant Sci ; 10: 1233, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695709

RESUMO

In plants, organs are inter-dependent for growth and development. Here, we aimed to investigate the distance at which interaction between organs operates and the relative contribution of within-tree variation in carbohydrate and hormonal contents on floral induction and fruit growth, in a fruit tree case study. Manipulations of leaf and fruit numbers were performed in two years on "Golden delicious" apple trees, at the shoot or branch scale or one side of Y-shape trees. For each treatment, floral induction proportion and mean fruit weight were recorded. Gibberellins content in shoot apical meristems, photosynthesis, and non-structural carbohydrate concentrations in organs were measured. Floral induction was promoted by leaf presence and fruit absence but was not associated with non-structural content in meristems. This suggests a combined action of promoting and inhibiting signals originating from leaves and fruit, and involving gibberellins. Nevertheless, these signals act at short distance only since leaf or fruit presence at long distances had no effect on floral induction. Conversely, fruit growth was affected by leaf presence even at long distances when sink demands were imbalanced within the tree, suggesting long distance transport of carbohydrates. We thus clarified the inter-dependence and distance effect among organs, therefore their degree of autonomy that appeared dependent on the process considered, floral induction or fruit growth.

19.
Tree Physiol ; 38(9): 1395-1408, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29325154

RESUMO

In plants, carbon source-sink relationships are assumed to affect their reproductive effort. In fruit trees, carbon source-sink relationships are likely to be involved in their fruiting behavior. In apple, a large variability in fruiting behaviors exists, from regular to biennial, which has been related to the within-tree synchronization vs desynchronization of floral induction in buds. In this study, we analyzed if carbon assimilation, availability and fluxes as well as shoot growth differ in apple genotypes with contrasted behaviors. Another aim was to determine the scale of plant organization at which growth and carbon balance are regulated. The study was carried out on 16 genotypes belonging to three classes: (i) biennial, (ii) regular with a high production of floral buds every year and (iii) regular, displaying desynchronized bud fates in each year. Three shoot categories, vegetative and reproductive shoots with or without fruits, were included. This study shows that shoot growth and carbon balance are differentially regulated by tree and shoot fruiting contexts. Shoot growth was determined by the shoot fruiting context, or by the type of shoot itself, since vegetative shoots were always longer than reproductive shoots whatever the tree crop load. Leaf photosynthesis depended on the tree crop load only, irrespective of the shoot category or the genotypic class. Starch content was also strongly affected by the tree crop load with some adjustments of the carbon balance among shoots since starch content was lower, at least at some dates, in shoots with fruits compared with the shoots without fruits within the same trees. Finally, the genotypic differences in terms of shoot carbon balance partly matched with genotypic bearing patterns. Nevertheless, carbon content in buds and the role of gibberellins produced by seeds as well as the distances at which they could affect floral induction should be further analyzed.


Assuntos
Carbono/metabolismo , Frutas/crescimento & desenvolvimento , Malus/crescimento & desenvolvimento , Malus/genética , Brotos de Planta/crescimento & desenvolvimento , Metabolismo dos Carboidratos , Flores/crescimento & desenvolvimento , Flores/fisiologia , França , Frutas/genética , Genótipo , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Brotos de Planta/genética , Árvores/genética , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA