Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE/ACM Trans Comput Biol Bioinform ; 15(4): 1138-1151, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29994637

RESUMO

Biochemical reaction networks are one of the most widely used formalisms in systems biology to describe the molecular mechanisms of high-level cell processes. However, modellers also reason with influence diagrams to represent the positive and negative influences between molecular species and may find an influence network useful in the process of building a reaction network. In this paper, we introduce a formalism of influence networks with forces, and equip it with a hierarchy of Boolean, Petri net, stochastic and differential semantics, similarly to reaction networks with rates. We show that the expressive power of influence networks is the same as that of reaction networks under the differential semantics, but weaker under the discrete semantics. Furthermore, the hierarchy of semantics leads us to consider a (positive) Boolean semantics that cannot test the absence of a species, that we compare with the (negative) Boolean semantics with test for absence of a species in gene regulatory networks à la Thomas. We study the monotonicity properties of the positive semantics and derive from them an algorithm to compute attractors in both the positive and negative Boolean semantics. We illustrate our results on models of the literature about the p53/Mdm2 DNA damage repair system, the circadian clock, and the influence of MAPK signaling on cell-fate decision in urinary bladder cancer.


Assuntos
Redes Reguladoras de Genes/genética , Semântica , Transdução de Sinais/genética , Biologia de Sistemas/métodos , Algoritmos , Reparo do DNA , Bases de Dados Genéticas , Humanos , Modelos Genéticos , Neoplasias da Bexiga Urinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA