Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(43): 18159-18171, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34668697

RESUMO

[FeFe] hydrogenases are highly active enzymes for interconverting protons and electrons with hydrogen (H2). Their active site H-cluster is formed of a canonical [4Fe-4S] cluster ([4Fe-4S]H) covalently attached to a unique [2Fe] subcluster ([2Fe]H), where both sites are redox active. Heterolytic splitting and formation of H2 takes place at [2Fe]H, while [4Fe-4S]H stores electrons. The detailed catalytic mechanism of these enzymes is under intense investigation, with two dominant models existing in the literature. In one model, an alternative form of the active oxidized state Hox, named HoxH, which forms at low pH in the presence of the nonphysiological reductant sodium dithionite (NaDT), is believed to play a crucial role. HoxH was previously suggested to have a protonated [4Fe-4S]H. Here, we show that HoxH forms by simple addition of sodium sulfite (Na2SO3, the dominant oxidation product of NaDT) at low pH. The low pH requirement indicates that sulfur dioxide (SO2) is the species involved. Spectroscopy supports binding at or near [4Fe-4S]H, causing its redox potential to increase by ∼60 mV. This potential shift detunes the redox potentials of the subclusters of the H-cluster, lowering activity, as shown in protein film electrochemistry (PFE). Together, these results indicate that HoxH and its one-electron reduced counterpart Hred'H are artifacts of using a nonphysiological reductant, and not crucial catalytic intermediates. We propose renaming these states as the "dithionite (DT) inhibited" states Hox-DTi and Hred-DTi. The broader potential implications of using a nonphysiological reductant in spectroscopic and mechanistic studies of enzymes are highlighted.


Assuntos
Biocatálise , Ditionita/química , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Substâncias Redutoras/química , Proteínas de Algas/química , Proteínas de Bactérias/química , Chlamydomonas reinhardtii/enzimologia , Clostridium/enzimologia , Desulfovibrio desulfuricans/enzimologia , Hidrogênio/química , Oxirredução , Sulfitos/química , Dióxido de Enxofre/química
2.
Nat Chem Biol ; 15(3): 241-249, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30692683

RESUMO

There is a challenge for metalloenzymes to acquire their correct metals because some inorganic elements form more stable complexes with proteins than do others. These preferences can be overcome provided some metals are more available than others. However, while the total amount of cellular metal can be readily measured, the available levels of each metal have been more difficult to define. Metal-sensing transcriptional regulators are tuned to the intracellular availabilities of their cognate ions. Here we have determined the standard free energy for metal complex formation to which each sensor, in a set of bacterial metal sensors, is attuned: the less competitive the metal, the less favorable the free energy and hence the greater availability to which the cognate allosteric mechanism is tuned. Comparing these free energies with values derived from the metal affinities of a metalloprotein reveals the mechanism of correct metalation exemplified here by a cobalt chelatase for vitamin B12.


Assuntos
Transferência de Energia/fisiologia , Metaloproteínas/metabolismo , Metais/metabolismo , Marcadores de Afinidade/metabolismo , Bactérias/enzimologia , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Metaloproteínas/fisiologia , Salmonella/metabolismo
3.
JACS Au ; 3(5): 1472-1483, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37234125

RESUMO

The acquisition of CoII by the corrin component of vitamin B12 follows one of two distinct pathways, referred to as early or late CoII insertion. The late insertion pathway exploits a CoII metallochaperone (CobW) from the COG0523 family of G3E GTPases, while the early insertion pathway does not. This provides an opportunity to contrast the thermodynamics of metalation in a metallochaperone-requiring and a metallochaperone-independent pathway. In the metallochaperone-independent route, sirohydrochlorin (SHC) associates with the CbiK chelatase to form CoII-SHC. CoII-buffered enzymatic assays indicate that SHC binding enhances the thermodynamic gradient for CoII transfer from the cytosol to CbiK. In the metallochaperone-dependent pathway, hydrogenobyrinic acid a,c-diamide (HBAD) associates with the CobNST chelatase to form CoII-HBAD. Here, CoII-buffered enzymatic assays indicate that CoII transfer from the cytosol to HBAD-CobNST must somehow traverse a highly unfavorable thermodynamic gradient for CoII binding. Notably, there is a favorable gradient for CoII transfer from the cytosol to the MgIIGTP-CobW metallochaperone, but further transfer of CoII from the GTP-bound metallochaperone to the HBAD-CobNST chelatase complex is thermodynamically unfavorable. However, after nucleotide hydrolysis, CoII transfer from the chaperone to the chelatase complex is calculated to become favorable. These data reveal that the CobW metallochaperone can overcome an unfavorable thermodynamic gradient for CoII transfer from the cytosol to the chelatase by coupling this process to GTP hydrolysis.

4.
Chem Sci ; 14(11): 2826-2838, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36937599

RESUMO

[FeFe] hydrogenases are highly efficient metalloenyzmes for hydrogen conversion. Their active site cofactor (the H-cluster) is composed of a canonical [4Fe-4S] cluster ([4Fe-4S]H) linked to a unique organometallic di-iron subcluster ([2Fe]H). In [2Fe]H the two Fe ions are coordinated by a bridging 2-azapropane-1,3-dithiolate (ADT) ligand, three CO and two CN- ligands, leaving an open coordination site on one Fe where substrates (H2 and H+) as well as inhibitors (e.g. O2, CO, H2S) may bind. Here, we investigate two new active site states that accumulate in [FeFe] hydrogenase variants where the cysteine (Cys) in the proton transfer pathway is mutated to alanine (Ala). Our experimental data, including atomic resolution crystal structures and supported by calculations, suggest that in these two states a third CN- ligand is bound to the apical position of [2Fe]H. These states can be generated both by "cannibalization" of CN- from damaged [2Fe]H subclusters as well as by addition of exogenous CN-. This is the first detailed spectroscopic and computational characterisation of the interaction of exogenous CN- with [FeFe] hydrogenases. Similar CN--bound states can also be generated in wild-type hydrogenases, but do not form as readily as with the Cys to Ala variants. These results highlight how the interaction between the first amino acid in the proton transfer pathway and the active site tunes ligand binding to the open coordination site and affects the electronic structure of the H-cluster.

5.
Nat Commun ; 12(1): 1195, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608553

RESUMO

Protein metal-occupancy (metalation) in vivo has been elusive. To address this challenge, the available free energies of metals have recently been determined from the responses of metal sensors. Here, we use these free energy values to develop a metalation-calculator which accounts for inter-metal competition and changing metal-availabilities inside cells. We use the calculator to understand the function and mechanism of GTPase CobW, a predicted CoII-chaperone for vitamin B12. Upon binding nucleotide (GTP) and MgII, CobW assembles a high-affinity site that can obtain CoII or ZnII from the intracellular milieu. In idealised cells with sensors at the mid-points of their responses, competition within the cytosol enables CoII to outcompete ZnII for binding CobW. Thus, CoII is the cognate metal. However, after growth in different [CoII], CoII-occupancy ranges from 10 to 97% which matches CobW-dependent B12 synthesis. The calculator also reveals that related GTPases with comparable ZnII affinities to CobW, preferentially acquire ZnII due to their relatively weaker CoII affinities. The calculator is made available here for use with other proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Cobalto/metabolismo , Vitamina B 12/biossíntese , Zinco/metabolismo , Escherichia coli , GTP Fosfo-Hidrolases , Metais/metabolismo , Salmonella
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA