Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Ecol ; 49(9-10): 498-506, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37278905

RESUMO

Air potato, Dioscorea bulbifera L., is an invasive vine found in the southeastern United States and is native to Asia and Africa. The air potato leaf beetle Lilioceris cheni (Coleoptera: Chrysomelidae), is a host specific biological control agent introduced for D. bulbifera control. In this study, odor cues that control the attraction of L. cheni to D. bulbifera were investigated. The first experiment investigated the response of L. cheni to D. bulbifera leaves versus no leaves in the presence or absence of air flow. The experiment showed a significant response of L. cheni to D. bulbifera leaves in the presence of air flow with leaves placed upwind. When air flow and/or leaves were absent, L. cheni dispersed randomly between the upwind and downwind targets, indicating L. cheni uses volatiles from D. bulbifera in host selection. The second experiment investigated L. cheni response to undamaged, larval-damaged, and adult-damaged plants. Lilioceris cheni showed preference to move towards conspecific damaged plants compared to undamaged plants but did not discriminate between larvae-damaged or adult-damaged plants. The third experiment investigated volatile profiles of damaged D. bulbifera plants using gas chromatography coupled with mass spectroscopy. We found significant differences in volatile profiles between adult and larval damaged plants compared to mechanically damaged and undamaged plants, with increases in 11 volatile compounds. However, larval and adult-damaged volatile profiles did not differ. The information acquired during this study could be used to develop strategies to monitor for L. cheni and improve its biological control program.


Assuntos
Besouros , Dioscorea , Solanum tuberosum , Compostos Orgânicos Voláteis , Animais , Besouros/fisiologia , Larva , Odorantes , Compostos Orgânicos Voláteis/análise , Folhas de Planta/química , Herbivoria
2.
Plant Dis ; 106(3): 818-827, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34645302

RESUMO

Rose rosette disease (RRD) caused by rose rosette emaravirus (RRV) is a major issue in the U.S. rose industry with no effective method for its management. This study evaluated the effect of foliar application of acibenzolar-S-methyl (ASM), a plant systemic acquired resistance inducer, in reducing RRD disease severity on Rosa species cv. Radtkopink ('Pink Double Knock Out') under greenhouse conditions, and the effect of ASM on plant growth under commercial nursery production conditions. ASM at 50- or 100-mg/liter concentrations at weekly intervals significantly reduced RRD severity compared with the untreated control in two of the three greenhouse trials (P < 0.05). The plants in these trials were subsequently pruned and observed for symptoms, which further indicated that application of ASM at 50- or 100-mg/liter concentrations lowered disease severity compared with the untreated control (P < 0.05) in these two trials. Plants treated with ASM at 50- or 100-mg/liter concentrations had delayed incidence of RRD compared with the nontreated controls. Plants treated with ASM at the 50- or 100-mg/liter rate in all three trials either did not have RRV present or the virus was present in fewer leaf samples than untreated controls as indicated by quantitative reverse transcription PCR analysis. Overall, plants treated with ASM at the 50-mg/liter concentration had 36 to 43% reduced RRD incidence compared with the water control. The treatment of two cultivars of rose, 'Radtkopink' and 'Meijocos' ('Pink Drift'), with weekly foliar applications of ASM at the three rates (0.5, 0.75, and 1.0 oz/A) indicated that ASM had no negative effect on flowering or plant growth at even the highest rate of application.


Assuntos
Vírus de RNA , Tiadiazóis , Doenças das Plantas/prevenção & controle , Folhas de Planta
3.
J Therm Biol ; 110: 103354, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36462881

RESUMO

Temperature is a key factor in insect biology and ecology. Climate change is driving insect exposure to temperature extremes and understanding the effect of extreme temperatures on the biology of invasive agricultural pests will be key to predicting the effect of temperature increases. Here, we simulated diurnal cycles with different lengths of exposure times to maximum temperatures experienced in summer in different locations of California on the survivorship and development of the Asian citrus psyllid (ACP) (Diaphorina citri Kuwayama). ACP is the invasive vector of Huanglongbing disease (HLB), a lethal bacterial pathogen of citrus which is currently spreading in the Los Angeles, California basin. We also tested the effect of high or low humidity at high temperatures on ACP survival and development and the effect of high temperatures on short-distance dispersal. ACP were able to complete their life cycle in all temperature treatments (28-43 °C) except in daily cycles when 43 °C was maintained for 6 h. Temperature and exposure time significantly decreased adult emergence above 40 °C. High temperatures significantly increased development time with longer development as exposure times to high temperatures increased. The interaction between low humidity and high temperature increased the number of emerging adults and decreased developmental times. ACP short-distance dispersal increased over time but was not affected by temperature. These results indicate that ACP are capable to develop in temperatures higher than previously reported, suggesting that increasing temperatures may reduce the invasive capacity of ACP in regions where maximum daily temperatures are increasing along with the duration of such temperatures throughout the day.


Assuntos
Citrus , Hemípteros , Animais , Temperatura , Umidade , Temperatura Alta
4.
J Insect Sci ; 20(6)2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33180945

RESUMO

Asian citrus psyllid, Diaphorina citri (Kuwayama), preferentially orient toward citrus hosts infected with the phytopathogenic bacterium, Candidatus liberibacter asiaticus (CLas) the agent of citrus greening (Huanglongbing, HLB), compared to uninfected counterparts. We investigated whether this preference for the odors of infected plants could be useful for the development of an attract-and-kill (AK) device for D. citri. Twenty-nine blends of volatile organic compounds derived from the odor of citrus infected with CLas were tested in laboratory olfactometer tests, and two blends were also assessed under field conditions. A seven component blend of tricosane: geranial: methyl salicylate: geranyl acetone: linalool: phenylacetaldehyde: (E)-ß-ocimene in a 0.40: 0.06: 0.08: 0.29: 0.08: 0.06: 0.03 ratio released from a proprietary slow-release matrix attracted twice more D. citri to yellow sticky traps compared with blank control traps. The attractive blend was subsequently co-formulated with spinosad insecticide into a slow-release matrix to create a prototype AK formulation against D. citri. This formulation effectively reduced the population density of D. citri up to 84% as measured with tap counts when deployed at a density of eight 2.5 g dollops per tree as compared with untreated controls in small plot field trials conducted in citrus orchards. Psyllid populations were not statistically affected at a deployment rate of four dollops per tree. Our results indicate that an AK formulation incorporating spinosad and a volatile blend signature of citrus greening into a slow-release matrix may be useful to suppress D. citri populations.


Assuntos
Citrus/química , Hemípteros , Controle de Insetos , Inseticidas , Compostos Orgânicos Voláteis/farmacologia , Animais , Controle de Insetos/instrumentação
5.
J Chem Ecol ; 43(5): 519-531, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28455797

RESUMO

The redbay ambrosia beetle Xyleborus glabratus is the vector of the symbiotic fungus, Raffaelea lauricola that causes laurel wilt, a highly lethal disease to members of the Lauraceae family. Pioneer X. glabratus beetles infect live trees with R. lauricola, and only when tree health starts declining more X. glabratus are attracted to the infected tree. Until now this sequence of events was not well understood. In this study, we investigated the temporal patterns of host volatiles and phytohormone production and vector attraction in relation to laurel wilt symptomology. Following inoculations with R. lauricola, volatile collections and behavioral tests were performed at different time points. Three days after infection (DAI), we found significant repellency of X. glabratus by leaf odors of infected swamp bay Persea palustris as compared with controls. However, at 10 and 20 DAI, X. glabratus were more attracted to leaf odors from infected than non-infected host plants. GC-MS analysis revealed an increase in methyl salicylate (MeSA) 3 DAI, whereas an increase of sesquiterpenes and leaf aldehydes was observed 10 and 20 DAI in leaf volatiles. MeSA was the only behaviorally active repellent of X. glabratus in laboratory bioassays. In contrast, X. glabratus did not prefer infected wood over healthy wood, and there was no associated significant difference in their volatile profiles. Analyses of phytohormone profiles revealed an initial increase in the amount of salicylic acid (SA) in leaf tissues following fungal infection, suggesting that the SA pathway was activated by R. lauricola infection, and this activation caused increased release of MeSA. Overall, our findings provide a better understanding of X. glabratus ecology and underline chemical interactions with its symbiotic fungus. Our work also demonstrates how the laurel wilt pathosystem alters host defenses to impact vector behavior and suggests manipulation of host odor by the fungus that attract more vectors.


Assuntos
Ascomicetos/fisiologia , Besouros/fisiologia , Lauraceae/química , Animais , Comportamento Animal/efeitos dos fármacos , Besouros/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Lauraceae/metabolismo , Lauraceae/microbiologia , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Simbiose , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia
6.
J Invertebr Pathol ; 148: 94-101, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28624621

RESUMO

Citrus production worldwide is currently threatened by Huanglongbing, or citrus greening disease. The associated pathogen, Candidatus Liberibacter asiaticus (CLas), is transmitted by the Asian citrus psyllid, Diaphorina citri. Annotation of the D. citri genome revealed a reduced innate immune system lacking a number of antimicrobial peptides and the Imd pathway associated with defense against Gram-negative bacteria. We characterized this apparent immune reduction in survival assays in which D. citri were exposed to Gram-negative or Gram-positive bacteria. D. citri experienced significant mortality when exposed to Serratia marcescens (Gram-negative) through oral ingestion or by septic injury. Escherichia coli (Gram-negative) also caused significant D. citri mortality, but only when inoculated at high concentrations through oral ingestion or by septic injury. Neither Micrococcus luteus (Gram-positive) or Bacillus subtilis (Gram-positive) caused significant mortality as compared to controls in any experiment. E. coli titers increased rapidly following exposure, while M. luteus titer remained stable for 72 h. We demonstrate that D. citri is capable of defending against E. coli, a Gram-negative bacterium, despite lacking the Imd defense pathway. The tolerance of D. citri to M. luteus infection, yet inability to effectively clear infections, presents questions to efficacy of D. citri immune response to effectively clear Gram-positive infections.


Assuntos
Hemípteros/imunologia , Interações Hospedeiro-Patógeno/imunologia , Animais , Hemípteros/microbiologia
7.
J Chem Ecol ; 42(5): 357-67, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27193763

RESUMO

Plant pathogens can manipulate the odor of their host; the odor of an infected plant is often attractive to the plant pathogen vector. It has been suggested that this odor-mediated manipulation attracts vectors and may contribute to spread of disease; however, this requires further broad demonstration among vector-pathogen systems. In addition, disruption of this indirect chemical communication between the pathogen and the vector has not been attempted. We present a model that demonstrates how a phytophathogen (Candidatus Liberibacter asiaticus) can increase its spread by indirectly manipulating the behavior of its vector (Asian citrus psyllid, Diaphorina citri Kuwayama). The model indicates that when vectors are attracted to pathogen-infected hosts, the proportion of infected vectors increases, as well as, the proportion of infected hosts. Additionally, the peak of infected host populations occurs earlier as compared with controls. These changes in disease dynamics were more important during scenarios with higher vector mortality. Subsequently, we conducted a series of experiments to disrupt the behavior of the Asian citrus psyllid. To do so, we exposed the vector to methyl salicylate, the major compound released following host infection with the pathogen. We observed that during exposure or after pre-exposure to methyl salicylate, the host preference can be altered; indeed, the Asian citrus psyllids were unable to select infected hosts over uninfected counterparts. We suggest mechanisms to explain these interactions and potential applications of disrupting herbivore host preference with plant volatiles for sustainable management of insect vectors.


Assuntos
Citrus/microbiologia , Hemípteros/efeitos dos fármacos , Especificidade de Hospedeiro/efeitos dos fármacos , Insetos Vetores/efeitos dos fármacos , Rhizobiaceae/fisiologia , Compostos Orgânicos Voláteis/farmacologia , Animais , Citrus/metabolismo , Relação Dose-Resposta a Droga , Hemípteros/fisiologia , Insetos Vetores/fisiologia , Modelos Estatísticos , Feromônios/metabolismo , Feromônios/farmacologia , Doenças das Plantas/microbiologia , Rhizobiaceae/efeitos dos fármacos , Salicilatos/metabolismo , Salicilatos/farmacologia , Compostos Orgânicos Voláteis/metabolismo
8.
J Chem Ecol ; 41(7): 613-21, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26070721

RESUMO

The redbay ambrosia beetle, Xyleborus glabratus, is an important pest of redbay (Persea borbonia) and swamp bay (P. palustris) trees in forests of the southeastern USA. It is also a threat to commercially grown avocado. The beetle is attracted to host wood volatiles, particularly sesquiterpenes. Contrary to other ambrosia beetles that attack stressed, possibly pathogen-infected, and dying trees, X. glabratus readily attacks healthy trees. To date little is known about the role of leaf volatiles in the host selection behavior and ecology of X. glabratus. To address this question, an olfactometer bioassay was developed to test the behavioral response of X. glabratus to plant leaf volatiles. We found that X. glabratus was attracted to the leaf odors of their hosts, redbay and swamp bay, with no attraction to a non-host tree tested (live oak, Quercus virginiana), which served as a negative control. Gas chromatography-mass spectrometry (GS/MS) analysis of leaves revealed the absence of sesquiterpenes known to be attractive to X. glabratus and present in host wood, suggesting that additional leaf-derived semiochemicals may serve as attractants for this beetle. An artificial blend of chemicals was developed based on GC/MS analyses of leaf volatiles and behavioral assays. This blend was attractive to X. glabratus at a level that rivaled currently used lures for practical monitoring of this pest. This synthetic redbay leaf blend also was tested in the field. Baited traps captured more X. glabratus than unbaited controls and equivalently to manuka oil lures. We hypothesize that leaf volatiles may be used by X. glabratus as an additional cue for host location.


Assuntos
Persea/parasitologia , Folhas de Planta/parasitologia , Sesquiterpenos/metabolismo , Árvores/parasitologia , Compostos Orgânicos Voláteis/metabolismo , Gorgulhos/fisiologia , Animais , Feminino , Interações Hospedeiro-Parasita , Controle de Insetos/métodos , Persea/química , Persea/metabolismo , Feromônios/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Sesquiterpenos/análise , Árvores/química , Árvores/metabolismo , Compostos Orgânicos Voláteis/análise
9.
J Econ Entomol ; 108(1): 3-10, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26470097

RESUMO

The Asian citrus psyllid, Diaphorina citri Kuwayama, is the vector of the bacterial pathogen, Candidatus Liberibacter asiaticus, which is the causal agent of huanglongbing (HLB) in the United States. Both short-range and long-range dispersal of D. citri adults affect the spread of HLB; however, little is known about the long-range dispersal capabilities of D. citri in the field or the seasonality of flight behavior. In the present study, an in situ protein marking technique was used to determine the dispersal of D. citri by trapping marked adults under natural field conditions. D. citri movement from abandoned citrus groves to adjacent managed citrus groves was greatest during the spring and summer months and decreased significantly during the colder months (September-March). D. citri were able to traverse potential geographic barriers such as roads and fallow fields. In an experiment conducted to determine long-range dispersal capacity in the absence of severe weather events, D. citri were able to disperse at least 2 km within 12 d. Wind direction was not correlated with the number of marked psyllids captured, indicating substantial flight capability by D. citri. Finally, the number of marked psyllids captured increased with the density of emerging young leaves on surrounding trees. The results confirm that abandoned citrus groves in Florida serve as reservoirs for D. citri, which can disperse across long distances despite geographical barriers.


Assuntos
Distribuição Animal , Citrus , Hemípteros , Insetos Vetores , Animais , Florida , Estações do Ano
10.
J Chem Ecol ; 40(4): 355-62, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24752857

RESUMO

The redbay ambrosia beetle, Xyleborus glabratus, is an invasive wood-boring beetle that has become established in the southeastern United States. The beetle transmits the causal pathogen of lethal laurel wilt to susceptible host trees, which include redbay, an important forest community species, and avocado, a valuable food crop. By examining odors of redbay wood, we developed an artificial lure that captured X. glabratus in redbay forests. Eucalyptol was a critical component of the blend for beetle attraction, and eucalyptol alone in large quantities attracted X. glabratus. Furthermore, eucalyptol stimulated boring by X. glabratus into paper arenas. The results suggest that eucalyptol contributes to host selection behavior of X. glabratus and may be useful for management of this pathogen vector.


Assuntos
Quimiotaxia , Cicloexanóis/metabolismo , Monoterpenos/metabolismo , Óleos Voláteis/metabolismo , Feromônios/metabolismo , Gorgulhos/fisiologia , Animais , Eucaliptol , Comportamento Alimentar , Florida , Cromatografia Gasosa-Espectrometria de Massas , Espécies Introduzidas , Lauraceae/metabolismo , Odorantes/análise , Microextração em Fase Sólida , Especificidade da Espécie
11.
J Econ Entomol ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801279

RESUMO

Given the recent invasion of Scirtothrips dorsalis Hood in North America, there is limited information regarding their distribution and population dynamics in cultivated small fruit crops. Therefore, we investigated the spatial and temporal distribution of S. dorsalis and their natural enemies in commercially produced strawberry fields in Florida. During 2 consecutive strawberry production seasons, 4 and 6 geographically separated strawberry fields were sampled and were divided into grids with 30-40 sampling points per field. At each sampling point, 4-5 leaf and flower samples were collected, and sticky traps were deployed. We quantified the occurrence of S. dorsalis as well as potential natural enemies, including Orius spp., Geocoris spp., and other predators such as long-legged flies. During both years, most of the S. dorsalis and natural enemies were found on field borders, and counts progressively diminished further into the interiors of plots and away from field edges. Cluster and outlier analysis revealed that S. dorsalis formed statistically significant clusters and that these "hot spots" remained in the same general locations throughout the season. There was a strong relationship between the occurrence of natural enemies and the presence of S. dorsalis, but the number of natural enemies was generally low compared to S. dorsalis. Our results indicate that targeting field borders for chemical control or planting strawberries away from natural areas containing potential alternative hosts for thrips may be an effective strategy for reducing agricultural inputs; however, future field assessments are needed to determine if these methods could replace the treatment of entire fields.

12.
Environ Entomol ; 52(3): 391-398, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37086487

RESUMO

Pepper weevil, Anthonomus eugenii Cano, is a serious pest of peppers (Capsicum annuum) in the United States and worldwide. This study evaluated the combined effect of insecticides (thiamethoxam and oxamyl) and reflective mulches (reflective silver on white and reflective silver on black) on pepper weevil suppression and yield increase. This study was conducted under field conditions in Homestead, FL, during the fall 2020, spring 2021, and 2022 growing seasons. The study consists of 2 mulch treatments as the main plots (reflective "silver on white," "white on black") and a bare ground with "no mulch" treatment in fall 2020 and spring 2021, and in spring 2022 with an additional treatment of reflective "silver on black" mulch. We hypothesized that jalapeño pepper grown on either reflective "silver on black" or "silver on white" plastic mulches would have fewer pepper weevil adults, fewer pepper weevil infested fruits, and higher yield than those grown on "white on black" plastic mulch or bare soil. Overall, the number of pepper weevil adults on plants and infested fruits was lower in the fall season compared to the spring season. In the fall 2020 season, the number of adults was not significantly different regardless of insecticide treatment and mulch type. However, infested fruits were higher on the untreated control plots than the treated plots in Fall 2020. Marketable yield was not significantly different among insecticide treatment on the "white on black" and reflective "silver on white" mulches. However, thiamethoxam treated plots had significantly higher yield than on the rest of the treatment on the bare soil with "no mulch." The number of adults was higher in the untreated control plot than the treated plots in spring 2021. The number of infested fallen fruits was not significantly different. However, marketable yield was significantly different among treatments on the "white on black" and reflective "silver on white" mulches in 2021. The treated plots on the reflective "silver on white" mulch produced significantly higher yield than the untreated control plots in 2022. The result of this study suggests that growing jalapeño peppers on reflective plastic mulch ("silver on white") in integration with thiamethoxam or oxamyl has the potential in reducing pepper weevil adult population and increasing yield of jalapeño pepper.


Assuntos
Besouros , Inseticidas , Gorgulhos , Animais , Frutas , Inseticidas/farmacologia , Solo , Tiametoxam
13.
Sci Rep ; 13(1): 3572, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864179

RESUMO

This study evaluated the role of dung beetle species alone or associated under different species on nitrous oxide (N2O) emission, ammonia volatilization, and the performance of pearl millet [Pennisetum glaucum (L.)]. There were seven treatments, including two controls (soil and soil + dung without beetles), single species of Onthophagus taurus [Shreber, 1759] (1), Digitonthophagus gazella [Fabricius, 1787] (2), or Phanaeus vindex [MacLeay, 1819] (3); and their assemblages (1 + 2 and 1 + 2 + 3). Nitrous oxide emission was estimated for 24 days, when pearl millet was planted in sequence to assess growth, nitrogen yield (NY), and dung beetle activity. Dung beetle species presented greater N2O flow of dung on the 6th day (80 g N2O-N ha-1 day-1) compared to soil and dung (2.6 g N2O-N ha-1 day-1). Ammonia emissions varied with the presence of dung beetles (P < 0.05), and D. gazella had less NH3-N on days 1, 6, and 12 with averages of 2061, 1526, and 1048 g ha-1 day-1, respectively. The soil N content increased with dung + beetle application. Dung application affected pearl millet herbage accumulation (HA) regardless of dung beetle presence, and averages ranged from 5 to 8 g DM bucket-1. A PCA analysis was applied to analyze variation and correlation to each variable, but it indicated a low principal component explanation (less than 80%), not enough to explain the variation in findings. Despite the greater dung removal, the largest species, P. vindex and their species combination, need to be more studied to get a better understanding about their contribution on greenhouse gases. The presence of dung beetles prior to planting improved pearl millet production by enhancing N cycling, although assemblages with the three beetle species enhanced N losses to the environment via denitrification.


Assuntos
Antílopes , Besouros , Pennisetum , Animais , Amônia , Óxido Nitroso , Volatilização , Nutrientes , Solo
14.
Insect Sci ; 29(2): 531-538, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34255924

RESUMO

The Asian citrus psyllid, Diaphorina citri, is the vector of the pathogenic bacteria that causes Huanglongbing, the most devasting disease affecting citrus worldwide. As cultivation of citrus tends to expand northward, the tolerance of psyllids to freezing temperatures needs to be investigated. While mortality of D. citri to cold temperature has been previously studied, much less is known regarding the acclimation potential of psyllids to cold temperatures. We first evaluated cold resistance of D. citri depending on color morph and sex. Subsequently, we compared mortality of D. citri at -4 °C for 10 hours between unacclimated psyllids, psyllids that were gradually acclimated to cold over 1 or 2 weeks, and psyllids intermittently acclimated also for 1 or 2 weeks. We did not find major differences in cold resistance between color morphs and sex. We found that after 1 week of gradual acclimation, the survival of psyllids at -4 °C increased to 86%, compared to 20% in the control group. Survival did not increase after the second week of gradual acclimation. Although intermittent acclimation improved survival compared to the control group, it was less effective than gradual acclimation with a survival at 30% and 70% after 1 and 2 weeks of acclimation, respectively, although this difference with gradual acclimation was not significant at week 2. These data show that gradual cold acclimation allows D. citri to survive brief periods below freezing. It may serve as a mechanism responsible for increasing northern establishment of this pest.


Assuntos
Citrus , Hemípteros , Aclimatação , Animais , Citrus/microbiologia , Temperatura Baixa , Congelamento , Hemípteros/microbiologia , Temperatura
15.
J Econ Entomol ; 115(6): 1956-1963, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36321896

RESUMO

To determine the factors leading to outbreaks of the sugarcane aphid, Melanaphis sacchari, (Zehntner) (Hemiptera: Aphididae) in sorghum in Haiti, a survey was carried out on farms during two cropping seasons, spring and fall of 2018. A total of 45 plots in three Haitian regions were monitored from the five-leaf stage to grain ripening. Infestation with M. sacchari was significantly higher in spring than in fall, except in one location. Melanaphis sacchari populations varied significantly according to phenological stages of sorghum, with significantly higher abundance during the heading and flowering stages than other stages. In and around sorghum fields, the sugarcane aphid was observed on plants from three families: Poaceae, Malvaceae, and Cucurbitaceae. Aphid natural enemies found in sorghum fields consisted of eight species of ladybeetles (Coleoptera: Coccinellidae), one hoverfly (Diptera: Syrphidae), one lacewing (Neuroptera: Chrysopidae), and one predatory midge (Diptera: Cecidomyiidae). In addition to these predators, two parasitoid species, Adialytus sp. (Hymenoptera: Braconidae) and Pachyneuron aphidis (Bouché) (Hymenoptera: Pteromalidae), emerged from sugarcane aphid mummies. Predator and parasitoid densities were highly affected by growing season, with most of the biological control happening in fall. This study provides insights on sugarcane aphid management in Haiti and the Caribbean Islands.


Assuntos
Afídeos , Saccharum , Sorghum , Animais , Haiti , Especificidade de Hospedeiro , Grão Comestível
16.
Environ Entomol ; 51(2): 305-312, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-34897406

RESUMO

Wind directly influences the spread of vector-borne plant pathogens by driving the passive dispersal of vectors to potentially new areas. Here, we evaluated the effect of wind speed and direction on the dispersal of the Asian citrus psyllid (ACP), Diaphorina citri (Kuwayama) (Hemiptera: Psyllidae), the vector of the bacteria causing huanglongbing (HLB), a lethal disease of citrus. The effect of different wind speeds on short or long-distance dispersal of ACP was investigated using a high-speed wind tunnel under laboratory conditions. The effect of wind direction on ACP dispersal under field conditions was evaluated using custom-made wind vane-style traps. In wind tunnel assays, ACP remained on plants until wind treatments reached ≥48 km/h when psyllids were mostly dislodged from plants and moved by the wind. For a short-distance, wind-driven movement (movement by the wind from one plant to another), the effect of wind speed was not significant at any of the wind speed treatments tested. Wind vane traps placed in a Florida citrus grove captured significantly more ACP on the windward side, suggesting that ACP were moved with the wind. The number of ACP found on the windward side of traps was significantly higher from May to August. These results indicate that ACP is likely to disperse with prevailing wind direction and that settled ACP may become dislodged and moved at random by high wind speeds occurring in areas of significant citrus production (southern California, Florida, or Texas).


Assuntos
Citrus , Hemípteros , Animais , Florida , Hemípteros/microbiologia , Doenças das Plantas/microbiologia , Texas
17.
J Econ Entomol ; 104(4): 1138-45, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21882675

RESUMO

Approximately US $1.3 billion is spent each year on insecticide applications in major row crops. Despite this significant economic importance, there are currently no widely established decision-support tools available to assess suitability of spray application conditions or of the predicted quality or performance of a given commercial insecticide applications. We conducted a field study, involving 14 commercial spray applications with either fixed wing airplane (N=8) or ground rig (N=6), and we used environmental variables as regression fits to obtained spray deposition (coverage in percentage). We showed that (1) ground rig applications provided higher spray deposition than aerial applications, (2) spray deposition was lowest in the bottom portion of the canopy, (3) increase in plant height reduced spray deposition, (4) wind speed increased spray deposition, and (5) higher ambient temperatures and dew point increased spray deposition. Potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae), mortality increased asymptotically to approximately 60% in response to abamectin spray depositions exceeding around 20%, whereas mortality of psyllid adults reached an asymptotic response approximately 40% when lambda-cyhalothrin/thiamethoxam spray deposition exceeded 30%. A spray deposition support tool was developed (http://pilcc.tamu.edu/) that may be used to make decisions regarding (1) when is the best time of day to conduct spray applications and (2) selecting which insecticide to spray based on expected spray deposition. The main conclusion from this analysis is that optimization of insecticide spray deposition should be considered a fundamental pillar of successful integrated pest management programs to increase efficiency of sprays (and therefore reduce production costs) and to reduce risk of resistance development in target pest populations.


Assuntos
Técnicas de Apoio para a Decisão , Inseticidas/administração & dosagem , Animais , Hemípteros , Solanum tuberosum/parasitologia
18.
Plants (Basel) ; 10(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466364

RESUMO

The technology of transgenic plants is challenging and time consuming, especially for higher plants and trees such as citrus. Double-stranded RNA (dsRNA) delivery via a plant virus is an alternative method to create transgenic plants by suppressing the expression of plant endogenous genes. Citrus tristeza virus-based vector has been constructed specifically for use in citrus trees. However, this is time-consuming, as it can take up to nine months to produce the desired phenotype. Here we describe a much faster method for the study of gene function in citrus trees. In the current study, we used laser light for the delivery of dsRNA to citrus leaves. We targeted the endogenous reporter gene phytoene desaturase (PDS) and obtained the classical phenotype (leaf bleaching) in only three days after the laser-assisted delivery. Interestingly, the phenotype response was systemic, which indicates the movement of dsRNA and/or ssRNA within the plants. In addition, dsRNAs were taken up by phloem cells and the bleaching phenotype was clear around the main veins. In conclusion, the delivery of dsRNA to plants through laser treatment may provide a fast and more specific tool to study the gene function in higher plants and trees.

19.
Insects ; 12(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946666

RESUMO

Diaphorina citri Kuwayama (Hemiptera: Liviidae), commonly known as Asian citrus psyllid (ACP), is an invasive insect pest and the vector of the bacterium causing Huanglongbing (HLB), a lethal disease of citrus. In the United States, ACP has been established in all citrus-producing zones, all of which have different environmental conditions. The spread of ACP and, more importantly, HLB, has progressed differently depending on the state, with more rapid spread in Florida and Texas than in California. Climatic variations between the regions are likely a strong factor in the difference in the rate of spread. Despite this, it is unknown how the flight capacity of D. citri is influenced by high temperatures (>30 °C) and subsequently, low humidity experienced in California but not in Texas or Florida. In this study, by using a custom-made, temperature-controlled flight mill arena, we assessed the effect of high temperatures on the flight capacity and flight propensity of D. citri under low (20-40%) and high (76-90%) relative humidity conditions. We found that temperature and humidity influence the propensity to engage in short or long-distance flight events. Psyllids exposed to temperatures above 43 °C only performed short flights (˂60 s), and a high relative humidity significantly decrease the proportion of long flights (≥60 s) at 26 and 40 °C. The flight capacity for insects who engaged in short and long flights was significantly affected by temperature but not by humidity. For long flyers, temperature (in the 26-43 °C range) was negatively correlated with distance flown and flight duration. The most favorable temperature for long dispersion was 26 °C, with suboptimal temperatures in the range of 32-37 °C and the least favorable temperatures at 40 and 43 °C. In conclusion, D. citri is able to fly in a broad range of temperatures and efficiently fly in high and low humidity. However, temperatures above 40 °C, similar to those experienced in semi-arid environments like Southern California or Arizona, are detrimental for its flight capacity.

20.
J Fungi (Basel) ; 7(9)2021 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-34575817

RESUMO

This study aimed to determine the inhibitive or stimulatory effects of leaf extracts from two Brassica rapa subspecies on the hyphal growth of two well-known entomopathogenic fungi, Cordyceps fumosorosea and Beauveria bassiana. Extract concentrations of 50, 25, and 10% w/v based on leaf fresh weight were prepared from turnip (B. rapa subspecies rapa) and bok choy (B. rapa subspecies chinensis) leaves. Each concentration was individually incorporated into potato dextrose agar plates for in vitro bioassays. The center of each plate was inoculated with 20 µL of a fungal suspension that was allowed 24 h to soak into the agar before sealing the plates and incubating them at 25 °C under a 14-h photophase. The fungal colony perimeter was marked 5 days after inoculation on two perpendicular lines drawn on the bottom of each plate. Radial colony growth was measured from 4 marks per plate 5, 10, and 15 days later. Radial growth rates for both fungi were 1.3-2.0 and 0.9-1.4 times faster with bok choy and turnip extracts, respectively, at the 25% and 50% concentrations compared to the no-extract control treatment. Therefore, bok choy and turnip leaf extracts can stimulate entomopathogenic fungus growth within 15 days. Biochemical compounds in the extracts include sesquiterpenes, α-copaene, ß-selinene, γ-gurjunene, calamenene, cubenene, and α-calacorene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA