RESUMO
Low-cost sensors integrated with the Internet of Things can enable real-time environmental monitoring networks and provide valuable water quality information to the public. However, the accuracy and precision of the values measured by the sensors are critical for widespread adoption. In this study, 19 different low-cost sensors, commonly found in the literature, from four different manufacturers are tested for measuring five water quality parameters: pH, dissolved oxygen, oxidation-reduction potential, turbidity, and temperature. The low-cost sensors are evaluated for each parameter by calculating the error and precision compared to a typical multiparameter probe assumed as a reference. The comparison was performed in a controlled environment with simultaneous measurements of real water samples. The relative error ranged from - 0.33 to 33.77%, and most of them were ≤ 5%. The pH and temperature were the ones with the most accurate results. In conclusion, low-cost sensors are a complementary alternative to quickly detect changes in water quality parameters. Further studies are necessary to establish a guideline for the operation and maintenance of low-cost sensors.
Assuntos
Monitoramento Ambiental , Qualidade da Água , Monitoramento Ambiental/métodos , Monitoramento Ambiental/instrumentação , Concentração de Íons de Hidrogênio , Temperatura , Poluentes Químicos da Água/análise , Oxigênio/análiseRESUMO
The global burden of disease estimated that approximately 7.1 million deaths worldwide were related to air pollution in 2016. However, only a limited number of small- and middle-sized cities have air quality monitoring networks. To date, air quality in terms of particulate matter is still mainly focused on mass concentration, with limited compositional monitoring even in mega cities, despite evidence indicating differential toxicity of particulate matter. As this evidence is far from conclusive, we conducted PM2.5 bioaccessibility studies of potentially harmful elements in a medium-sized city, Londrina, Brazil. The data was interpreted in terms of source apportionment, the health risk evaluation and the bioaccessibility of inorganic contents in an artificial lysosomal fluid. The daily average concentration of PM2.5 was below the WHO guideline, however, the chemical health assessment indicated a considerable health risk. The in vitro evaluation showed different potential mobility when compared to previous studies in large-sized cities, those with 1 million inhabitants or more (Curitiba and Manaus). The new WHO guideline for PM2.5 mass concentration puts additional pressure on cities where air pollution monitoring is limited and/or neglected, because decision making is mainly revenue-driven and not socioeconomic-driven. Given the further emerging evidence that PM chemical composition is as, or even more, important than mass concentration levels, the research reported in the paper could pave the way for the necessary inter- and intra-city collaborations that are needed to address this global health challenge.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Cidades , Poluição do Ar/análise , Material Particulado/análise , Organização Mundial da Saúde , Monitoramento AmbientalRESUMO
The emissions, deposition, and chemistry of volatile organic compounds (VOCs) are thought to be influenced by underlying landscape heterogeneity at intermediate horizontal scales of several hundred meters across different forest subtypes within a tropical forest. Quantitative observations and scientific understanding at these scales, however, remain lacking, in large part due to a historical absence of canopy access and suitable observational approaches. Herein, horizontal heterogeneity in VOC concentrations in the near-canopy atmosphere was examined by sampling from an unmanned aerial vehicle (UAV) flown horizontally several hundred meters over the plateau and slope forests in central Amazonia during the morning and early afternoon periods of the wet season of 2018. Unlike terpene concentrations, the isoprene concentrations in the near-canopy atmosphere over the plateau forest were 60% greater than those over the slope forest. A gradient transport model constrained by the data suggests that isoprene emissions differed by 220 to 330% from these forest subtypes, which is in contrast to a 0% difference implemented in most present-day biosphere emissions models (i.e., homogeneous emissions). Quantifying VOC concentrations, emissions, and other processes at intermediate horizontal scales is essential for understanding the ecological and Earth system roles of VOCs and representing them in climate and air quality models.
Assuntos
Atmosfera/química , Butadienos/análise , Florestas , Hemiterpenos/análise , Compostos Orgânicos Voláteis/análise , Brasil , Estações do Ano , Árvores/classificação , Árvores/fisiologiaRESUMO
Due to the recent coronavirus-2019 pandemic, several studies have emerged looking for new materials, especially with biocidal characteristics. Thus, the present research investigates the antibacterial properties of biodegradable cellulose acetate (CA) / cetylpyridinium bromide (CPB) electrospun nanofibers, their aerosol filtration, and the possible use as a filter media of surgical face masks. Then, samples of these nanofibers were produced over a nonwoven substrate, using different volumes of polymeric solution during the electrospinning process. The evaluation of the antibacterial properties of the nanofibers was performed for Escherichia coli and Staphylococcus aureus using quantitative methods. The aerosol filtration performance was evaluated in these samples for NaCl nanoparticles (from 7-300â nm) and with 8â mL min-1 of air flow rate. The results show that the single use of the surfactant has antibacterial properties from a concentration of 39â µg mL-1 of solution. The nanofibers presented a reduction of 100% for both bacteria. Air filtration tests showed 126.03 and 207.73 Pa cm-² of pressure drops and 63 and 77% of aerosol filtration efficiency (FE) for samples with 0.13 and 0.15 mL, respectively. Regarding the nanofiber produced with 0.35 mL, the value obtained was 115.13 ± 33.64 Pa cm-2 and 3.15% of particle penetration. These breathability values are higher than those required for the surgical face mask standard, indicating that improvements in the porosity and thickness are necessary to meet the Brazilian requirements. However, the nanofibers could be applied as filter media for indoor air conditioning systems due to their FE and biocidal properties.
Assuntos
Filtros de Ar , Nanofibras , Nanofibras/química , Máscaras , Filtração/métodos , Antibacterianos , Aerossóis , Escherichia coliRESUMO
The chemical composition of particulate material plays an important role in the atmosphere, providing cloud and ice nuclei for storm development. This study aims to evaluate and infer the sources of ions, metals, and metalloids in the fine atmospheric particulate matter (PM2.5) from triple border Paraná, Santa Catarina (Brazil), and northeastern Argentina, which is among those with the highest hail incidence in the world. Among the ions, the concentrations presented the following sequence in decreasing order: [Formula: see text]> K+> [Formula: see text]> [Formula: see text]> Ca2+> Cl-> Na+> Mg2+. Regarding the metals and metalloid concentrations, the order was of S > Si > Al > Fe > P > Ti, Cr, Cu, and Zn > Br > Mn, and Ni. The main sources, supported by positive matrix factorization results, are soil and agricultural activities, as well as vehicular emissions due to the agricultural machinery and the displacement of residents. Besides, the influence of aerosols from biomass burning and industrial activities was observed, possibly come from long-distance transport. The composition of PM2.5 presents one or more elements considered present ice nuclei (IN) activity, such as Al, Mn, Cu, Co, Ni, and V (in form of oxides), corroborating with other studies, also, with high hail incidence. However, further studies are needed to verify the role of aerosol characteristics in the formation of IN and, consequently, hail.
Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Brasil , Monitoramento Ambiental , Material Particulado/análise , Emissões de Veículos/análiseRESUMO
In the metropolitan area of São Paulo, Brazil, ozone and particulate matter (PM) are the air pollutants that pose the greatest threat to air quality, since the PM and the ozone precursors (nitrogen oxides and volatile organic compounds) are the main source of air pollution from vehicular emissions. Vehicular emissions can be measured inside road tunnels, and those measurements can provide information about emission factors of in-use vehicles. Emission factors are used to estimate vehicular emissions and are described as the amount of species emitted per vehicle distance driven or per volume of fuel consumed. This study presents emission factor data for fine particles, coarse particles, inhalable particulate matter and black carbon, as well as size distribution data for inhalable particulate matter, as measured in March and May of 2004, respectively, in the Jânio Quadros and Maria Maluf road tunnels, both located in São Paulo. The Jânio Quadros tunnel carries mainly light-duty vehicles, whereas the Maria Maluf tunnel carries light-duty and heavy-duty vehicles. In the Jânio Quadros tunnel, the estimated light-duty vehicle emission factors for the trace elements copper and bromine were 261 and 220 microg km(-1), respectively, and 16, 197, 127 and 92 mg km(-1), respectively, for black carbon, inhalable particulate matter, coarse particles and fine particles. The mean contribution of heavy-duty vehicles to the emissions of black carbon, inhalable particulate matter, coarse particles and fine particles was, respectively 29, 4, 6 and 6 times higher than that of light-duty vehicles. The inhalable particulate matter emission factor for heavy-duty vehicles was 1.2 times higher than that found during dynamometer testing. In general, the particle emissions in São Paulo tunnels are higher than those found in other cities of the world.
Assuntos
Poluição do Ar/análise , Cidades , Material Particulado , Emissões de Veículos , Brasil , Monitoramento Ambiental , HumanosRESUMO
Great efforts have been made over the years to assess the effectiveness of air pollution controls in place in the metropolitan area of São Paulo (MASP), Brazil. In this work, the community multiscale air quality (CMAQ) model was used to evaluate the efficacy of emission control strategies in MASP, considering the spatial and temporal variability of fine particle concentration. Seven different emission scenarios were modeled to assess the relationship between the emission of precursors and ambient aerosol concentration, including a baseline emission inventory, and six sensitivity scenarios with emission reductions in relation to the baseline inventory: a 50% reduction in SO2 emissions; no SO2 emissions; a 50% reduction in SO2, NOx, and NH3 emissions; no sulfate (PSO4) particle emissions; no PSO4 and nitrate (PNO3) particle emissions; and no PNO3 emissions. Results show that ambient PM2.5 behavior is not linearly dependent on the emission of precursors. Variation levels in PM2.5 concentrations did not correspond to the reduction ratios applied to precursor emissions, mainly due to the contribution of organic and elemental carbon, and other secondary organic aerosol species. Reductions in SO2 emissions are less likely to be effective at reducing PM2.5 concentrations at the expected rate in many locations of the MASP. The largest reduction in ambient PM2.5 was obtained with the scenario that considered a reduction in 50% of SO2, NOx, and NH3 emissions (1 to 2 µg/m3 on average). It highlights the importance of considering the role of secondary organic aerosols and black carbon in the design of effective policies for ambient PM2.5 concentration control.
Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Política Ambiental , Aerossóis/análise , Poluição do Ar/análise , Poluição do Ar/legislação & jurisprudência , Poluição do Ar/estatística & dados numéricos , Brasil , Carbono/análise , Monitoramento Ambiental/métodos , Óxidos de Nitrogênio/análise , Material Particulado/análise , Fuligem/análiseRESUMO
We present a new version of the Brazilian developments on the Regional Atmospheric Modeling System where different previous versions for weather, chemistry and carbon cycle were unified in a single integrated software system. The new version also has a new set of state-of-the-art physical parameterizations and greater computational parallel and memory usage efficiency. Together with the description of the main features are examples of the quality of the transport scheme for scalars, radiative fluxes on surface and model simulation of rainfall systems over South America in different spatial resolutions using a scale-aware convective parameterization. Besides, the simulation of the diurnal cycle of the convection and carbon dioxide concentration over the Amazon Basin, as well as carbon dioxide fluxes from biogenic processes over a large portion of South America are shown. Atmospheric chemistry examples present model performance in simulating near-surface carbon monoxide and ozone in Amazon Basin and Rio de Janeiro megacity. For tracer transport and dispersion, it is demonstrated the model capabilities to simulate the volcanic ash 3-d redistribution associated with the eruption of a Chilean volcano. Then, the gain of computational efficiency is described with some details. BRAMS has been applied for research and operational forecasting mainly in South America. Model results from the operational weather forecast of BRAMS on 5 km grid spacing in the Center for Weather Forecasting and Climate Studies, INPE/Brazil, since 2013 are used to quantify the model skill of near surface variables and rainfall. The scores show the reliability of BRAMS for the tropical and subtropical areas of South America. Requirements for keeping this modeling system competitive regarding on its functionalities and skills are discussed. At last, we highlight the relevant contribution of this work on the building up of a South American community of model developers.
RESUMO
The objective of this study was to improve the vehicular emissions inventory for the light- and heavy-duty fleet in the metropolitan area of São Paulo (MASP), Brazil. To that end, we measured vehicle emissions in road tunnels located in the MASP. On March 22-26, 2004 and May 04-07, 2004, respectively, CO, CO2, NOx, SO2, and volatile organic compounds (VOCs) emissions were measured in two tunnels: the Janio Quadros, which carries light-dutyvehicles; and the Maria Maluf, which carries light-duty vehicles and heavy-duty diesel trucks. Pollutant concentrations were measured inside the tunnels, and background pollutant concentrations were measured outside of the tunnels. The mean CO and NOx emission factors (in g km(-1)) were, respectively, 14.6 +/- 2.3 and 1.6 +/- 0.3 for light-duty vehicles, compared with 20.6 +/- 4.7 and 22.3 +/- 9.8 for heavy-duty vehicles. The total VOCs emission factor for the Maria Maluf tunnel was 1.4 +/- 1.3 g km(-1). The main VOCs classes identified were aromatic, alkane, and aldehyde compounds. For the heavy-duty fleet, NOx emission factors were approximately 14 times higher than those found for the light-duty fleet. This was attributed to the high levels of NOx emissions from diesel vehicles.