Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Neurobiol Dis ; 182: 106140, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37120095

RESUMO

The rare A673T variant was the first variant found within the amyloid precursor protein (APP) gene conferring protection against Alzheimer's disease (AD). Thereafter, different studies have discovered that the carriers of the APP A673T variant show reduced levels of amyloid beta (Aß) in the plasma and better cognitive performance at high age. Here, we analyzed cerebrospinal fluid (CSF) and plasma of APP A673T carriers and control individuals using a mass spectrometry-based proteomics approach to identify differentially regulated targets in an unbiased manner. Furthermore, the APP A673T variant was introduced into 2D and 3D neuronal cell culture models together with the pathogenic APP Swedish and London mutations. Consequently, we now report for the first time the protective effects of the APP A673T variant against AD-related alterations in the CSF, plasma, and brain biopsy samples from the frontal cortex. The CSF levels of soluble APPß (sAPPß) and Aß42 were significantly decreased on average 9-26% among three APP A673T carriers as compared to three well-matched controls not carrying the protective variant. Consistent with these CSF findings, immunohistochemical assessment of cortical biopsy samples from the same APP A673T carriers did not reveal Aß, phospho-tau, or p62 pathologies. We identified differentially regulated targets involved in protein phosphorylation, inflammation, and mitochondrial function in the CSF and plasma samples of APP A673T carriers. Some of the identified targets showed inverse levels in AD brain tissue with respect to increased AD-associated neurofibrillary pathology. In 2D and 3D neuronal cell culture models expressing APP with the Swedish and London mutations, the introduction of the APP A673T variant resulted in lower sAPPß levels. Concomitantly, the levels of sAPPα were increased, while decreased levels of CTFß and Aß42 were detected in some of these models. Our findings emphasize the important role of APP-derived peptides in the pathogenesis of AD and demonstrate the effectiveness of the protective APP A673T variant to shift APP processing towards the non-amyloidogenic pathway in vitro even in the presence of two pathogenic mutations.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Heterozigoto , Encéfalo/metabolismo
2.
Neurobiol Dis ; 163: 105603, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34954322

RESUMO

Alzheimer's disease (AD) is the most common form of dementia, which is neuropathologically characterized by extracellular senile plaques containing amyloid-ß and intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein. Previous studies have suggested a role for septin (SEPTIN) protein family members in AD-associated cellular processes. Here, we elucidated the potential role of presynaptic SEPTIN5 protein and its post-translational modifications in the molecular pathogenesis of AD. RNA and protein levels of SEPTIN5 showed a significant decrease in human temporal cortex in relation to the increasing degree of AD-related neurofibrillary pathology. Conversely, an increase in the phosphorylation of the functionally relevant SEPTIN5 phosphorylation site S327 was observed already in the early phases of AD-related neurofibrillary pathology, but not in the cerebrospinal fluid of individuals fulfilling the criteria for mild cognitive impairment due to AD. According to the mechanistic assessments, a link between SEPTIN5 S327 phosphorylation status and the effects of SEPTIN5 on amyloid precursor protein processing and markers of autophagy was discovered in mouse primary cortical neurons transduced with lentiviral constructs encoding wild type SEPTIN5 or SEPTIN5 phosphomutants (S327A and S327D). C57BL/6 J mice intrahippocampally injected with lentiviral wild type SEPTIN5 or phosphomutant constructs did not show changes in cognitive performance after five to six weeks from the start of injections. However, SEPTIN5 S327 phosphorylation status was linked to changes in short-term synaptic plasticity ex vivo at the CA3-CA1 synapse. Collectively, these data suggest that SEPTIN5 and its S327 phosphorylation status play a pivotal role in several cellular processes relevant for AD.


Assuntos
Hipocampo/metabolismo , Emaranhados Neurofibrilares/metabolismo , Septinas/metabolismo , Sinapses/metabolismo , Animais , Autofagia/fisiologia , Modelos Animais de Doenças , Hipocampo/patologia , Humanos , Camundongos , Emaranhados Neurofibrilares/patologia , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Sinapses/patologia
3.
Mol Psychiatry ; 26(10): 5592-5607, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33144711

RESUMO

Although APP metabolism is being intensively investigated, a large fraction of its modulators is yet to be characterized. In this context, we combined two genome-wide high-content screenings to assess the functional impact of miRNAs and genes on APP metabolism and the signaling pathways involved. This approach highlighted the involvement of FERMT2 (or Kindlin-2), a genetic risk factor of Alzheimer's disease (AD), as a potential key modulator of axon guidance, a neuronal process that depends on the regulation of APP metabolism. We found that FERMT2 directly interacts with APP to modulate its metabolism, and that FERMT2 underexpression impacts axonal growth, synaptic connectivity, and long-term potentiation in an APP-dependent manner. Last, the rs7143400-T allele, which is associated with an increased AD risk and localized within the 3'UTR of FERMT2, induced a downregulation of FERMT2 expression through binding of miR-4504 among others. This miRNA is mainly expressed in neurons and significantly overexpressed in AD brains compared to controls. Altogether, our data provide strong evidence for a detrimental effect of FERMT2 underexpression in neurons and insight into how this may influence AD pathogenesis.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Humanos , Proteínas de Membrana , Proteínas de Neoplasias , Plasticidade Neuronal/genética , Neurônios , Fatores de Risco
4.
Neurobiol Dis ; 124: 454-468, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30557660

RESUMO

No single-omic approach completely elucidates the multitude of alterations taking place in Alzheimer's disease (AD). Here, we coupled transcriptomic and phosphoproteomic approaches to determine the temporal sequence of changes in mRNA, protein, and phosphopeptide expression levels from human temporal cortical samples, with varying degree of AD-related pathology. This approach highlighted fluctuation in synaptic and mitochondrial function as the earliest pathological events in brain samples with AD-related pathology. Subsequently, increased expression of inflammation and extracellular matrix-associated gene products was observed. Interaction network assembly for the associated gene products, emphasized the complex interplay between these processes and the role of addressing post-translational modifications in the identification of key regulators. Additionally, we evaluate the use of decision trees and random forests in identifying potential biomarkers differentiating individuals with different degree of AD-related pathology. This multiomic and temporal sequence-based approach provides a better understanding of the sequence of events leading to AD.


Assuntos
Doença de Alzheimer/patologia , Perfilação da Expressão Gênica/métodos , Proteômica/métodos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Humanos , Biologia de Sistemas/métodos
5.
Acta Neuropathol ; 138(4): 631-652, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31065832

RESUMO

The bridging integrator 1 gene (BIN1) is a major genetic risk factor for Alzheimer's disease (AD). In this report, we investigated how BIN1-dependent pathophysiological processes might be associated with Tau. We first generated a cohort of control and transgenic mice either overexpressing human MAPT (TgMAPT) or both human MAPT and BIN1 (TgMAPT;TgBIN1), which we followed-up from 3 to 15 months. In TgMAPT;TgBIN1 mice short-term memory deficits appeared earlier than in TgMAPT mice; however-unlike TgMAPT mice-TgMAPT;TgBIN1 mice did not exhibit any long-term or spatial memory deficits for at least 15 months. After killing the cohort at 18 months, immunohistochemistry revealed that BIN1 overexpression prevents both Tau mislocalization and somatic inclusion in the hippocampus, where an increase in BIN1-Tau interaction was also observed. We then sought mechanisms controlling the BIN1-Tau interaction. We developed a high-content screening approach to characterize modulators of the BIN1-Tau interaction in an agnostic way (1,126 compounds targeting multiple pathways), and we identified-among others-an inhibitor of calcineurin, a Ser/Thr phosphatase. We determined that calcineurin dephosphorylates BIN1 on a cyclin-dependent kinase phosphorylation site at T348, promoting the open conformation of the neuronal BIN1 isoform. Phosphorylation of this site increases the availability of the BIN1 SH3 domain for Tau interaction, as demonstrated by nuclear magnetic resonance experiments and in primary neurons. Finally, we observed that although the levels of the neuronal BIN1 isoform were unchanged in AD brains, phospho-BIN1(T348):BIN1 ratio was increased, suggesting a compensatory mechanism. In conclusion, our data support the idea that BIN1 modulates the AD risk through an intricate regulation of its interaction with Tau. Alteration in BIN1 expression or activity may disrupt this regulatory balance with Tau and have direct effects on learning and memory.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transtornos da Memória/metabolismo , Memória de Longo Prazo/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Tauopatias/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas tau/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos da Memória/genética , Transtornos da Memória/patologia , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Memória Espacial/fisiologia , Tauopatias/genética , Tauopatias/patologia , Proteínas Supressoras de Tumor/genética
6.
J Cell Sci ; 129(11): 2224-38, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27084579

RESUMO

Dysfunction and loss of synapses are early pathogenic events in Alzheimer's disease. A central step in the generation of toxic amyloid-ß (Aß) peptides is the cleavage of amyloid precursor protein (APP) by ß-site APP-cleaving enzyme (BACE1). Here, we have elucidated whether downregulation of septin (SEPT) protein family members, which are implicated in synaptic plasticity and vesicular trafficking, affects APP processing and Aß generation. SEPT8 was found to reduce soluble APPß and Aß levels in neuronal cells through a post-translational mechanism leading to decreased levels of BACE1 protein. In the human temporal cortex, we identified alterations in the expression of specific SEPT8 transcript variants in a manner that correlated with Alzheimer's-disease-related neurofibrillary pathology. These changes were associated with altered ß-secretase activity. We also discovered that the overexpression of a specific Alzheimer's-disease-associated SEPT8 transcript variant increased the levels of BACE1 and Aß peptides in neuronal cells. These changes were related to an increased half-life of BACE1 and the localization of BACE1 in recycling endosomes. These data suggest that SEPT8 modulates ß-amyloidogenic processing of APP through a mechanism affecting the intracellular sorting and accumulation of BACE1.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Processamento de Proteína Pós-Traducional , Septinas/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Linhagem Celular Tumoral , Regulação para Baixo , Perfilação da Expressão Gênica , Células HEK293 , Meia-Vida , Hipocampo/patologia , Humanos , Espaço Intracelular/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/patologia , Neurônios/metabolismo , Estabilidade Proteica , Transporte Proteico , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Septinas/genética , Lobo Temporal/metabolismo , Lobo Temporal/patologia
7.
J Neuroinflammation ; 14(1): 215, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29115990

RESUMO

BACKGROUND: DHCR24, involved in the de novo synthesis of cholesterol and protection of neuronal cells against different stress conditions, has been shown to be selectively downregulated in neurons of the affected brain areas in Alzheimer's disease. METHODS: Here, we investigated whether the overexpression of DHCR24 protects neurons against inflammation-induced neuronal death using co-cultures of mouse embryonic primary cortical neurons and BV2 microglial cells upon acute neuroinflammation. Moreover, the effects of DHCR24 overexpression on dendritic spine density and morphology in cultured mature mouse hippocampal neurons and on the outcome measures of ischemia-induced brain damage in vivo in mice were assessed. RESULTS: Overexpression of DHCR24 reduced the loss of neurons under inflammation elicited by LPS and IFN-γ treatment in co-cultures of mouse neurons and BV2 microglial cells but did not affect the production of neuroinflammatory mediators, total cellular cholesterol levels, or the activity of proteins linked with neuroprotective signaling. Conversely, the levels of post-synaptic cell adhesion protein neuroligin-1 were significantly increased upon the overexpression of DHCR24 in basal growth conditions. Augmentation of DHCR24 also increased the total number of dendritic spines and the proportion of mushroom spines in mature mouse hippocampal neurons. In vivo, overexpression of DHCR24 in striatum reduced the lesion size measured by MRI in a mouse model of transient focal ischemia. CONCLUSIONS: These results suggest that the augmentation of DHCR24 levels provides neuroprotection in acute stress conditions, which lead to neuronal loss in vitro and in vivo.


Assuntos
Inflamação/metabolismo , Neurônios/metabolismo , Neuroproteção/fisiologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Morte Celular/fisiologia , Técnicas de Cocultura , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Inflamação/patologia , Masculino , Camundongos , Microglia/metabolismo , Neurônios/patologia
9.
Neurobiol Dis ; 85: 187-205, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26563932

RESUMO

Accumulation of ß-amyloid (Aß) and phosphorylated tau in the brain are central events underlying Alzheimer's disease (AD) pathogenesis. Aß is generated from amyloid precursor protein (APP) by ß-site APP-cleaving enzyme 1 (BACE1) and γ-secretase-mediated cleavages. Ubiquilin-1, a ubiquitin-like protein, genetically associates with AD and affects APP trafficking, processing and degradation. Here, we have investigated ubiquilin-1 expression in human brain in relation to AD-related neurofibrillary pathology and the effects of ubiquilin-1 overexpression on BACE1, tau, neuroinflammation, and neuronal viability in vitro in co-cultures of mouse embryonic primary cortical neurons and microglial cells under acute neuroinflammation as well as neuronal cell lines, and in vivo in the brain of APdE9 transgenic mice at the early phase of the development of Aß pathology. Ubiquilin-1 expression was decreased in human temporal cortex in relation to the early stages of AD-related neurofibrillary pathology (Braak stages 0-II vs. III-IV). There was a trend towards a positive correlation between ubiquilin-1 and BACE1 protein levels. Consistent with this, ubiquilin-1 overexpression in the neuron-microglia co-cultures with or without the induction of neuroinflammation resulted in a significant increase in endogenously expressed BACE1 levels. Sustained ubiquilin-1 overexpression in the brain of APdE9 mice resulted in a moderate, but insignificant increase in endogenous BACE1 levels and activity, coinciding with increased levels of soluble Aß40 and Aß42. BACE1 levels were also significantly increased in neuronal cells co-overexpressing ubiquilin-1 and BACE1. Ubiquilin-1 overexpression led to the stabilization of BACE1 protein levels, potentially through a mechanism involving decreased degradation in the lysosomal compartment. Ubiquilin-1 overexpression did not significantly affect the neuroinflammation response, but decreased neuronal viability in the neuron-microglia co-cultures under neuroinflammation. Taken together, these results suggest that ubiquilin-1 may mechanistically participate in AD molecular pathogenesis by affecting BACE1 and thereby APP processing and Aß accumulation.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Técnicas de Cocultura , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Fragmentos de Peptídeos/metabolismo , Proteínas tau/metabolismo
10.
Adv Sci (Weinh) ; 10(35): e2206190, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37946608

RESUMO

Epithelial cells are in continuous dynamic biochemical and physical interaction with their extracellular environment. Ultimately, this interplay guides fundamental physiological processes. In these interactions, cells generate fast local and global transients of Ca2+ ions, which act as key intracellular messengers. However, the mechanical triggers initiating these responses have remained unclear. Light-responsive materials offer intriguing possibilities to dynamically modify the physical niche of the cells. Here, a light-sensitive azobenzene-based glassy material that can be micropatterned with visible light to undergo spatiotemporally controlled deformations is used. Real-time monitoring of consequential rapid intracellular Ca2+ signals reveals that the mechanosensitive cation channel Piezo1 has a major role in generating the Ca2+ transients after nanoscale mechanical deformation of the cell culture substrate. Furthermore, the studies indicate that Piezo1 preferably responds to shear deformation at the cell-material interphase rather than to absolute topographical change of the substrate. Finally, the experimentally verified computational model suggests that Na+ entering alongside Ca2+ through the mechanosensitive cation channels modulates the duration of Ca2+ transients, influencing differently the directly stimulated cells and their neighbors. This highlights the complexity of mechanical signaling in multicellular systems. These results give mechanistic understanding on how cells respond to rapid nanoscale material dynamics and deformations.


Assuntos
Células Epiteliais , Mecanotransdução Celular , Mecanotransdução Celular/fisiologia , Células Cultivadas , Cátions
11.
Cells ; 10(4)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918872

RESUMO

Methyl-CpG-binding protein 2 (MECP2) is a critical transcriptional regulator for synaptic function. Dysfunction of synapses, as well as microglia-mediated neuroinflammation, represent the earliest pathological events in Alzheimer's disease (AD). Here, expression, protein levels, and activity-related phosphorylation changes of MECP2 were analyzed in post-mortem human temporal cortex. The effects of wild type and phosphorylation-deficient MECP2 variants at serine 423 (S423) or S80 on microglial and neuronal function were assessed utilizing BV2 microglial monocultures and co-cultures with mouse cortical neurons under inflammatory stress conditions. MECP2 phosphorylation at the functionally relevant S423 site nominally decreased in the early stages of AD-related neurofibrillary pathology in the human temporal cortex. Overexpression of wild type MECP2 enhanced the pro-inflammatory response in BV2 cells upon treatment with lipopolysaccharide (LPS) and interferon-γ (IFNγ) and decreased BV2 cell phagocytic activity. The expression of the phosphorylation-deficient MECP2-S423A variant, but not S80A, further increased the pro-inflammatory response of BV2 cells. In neurons co-cultured with BV2 cells, the MECP2-S423A variant increased the expression of several genes, which are important for the maintenance and protection of neurons and synapses upon inflammatory stress. Collectively, functional analyses in different cellular models suggest that MECP2 may influence the inflammatory response in microglia independently of S423 and S80 phosphorylation, while the S423 phosphorylation might play a role in the activation of neuronal gene expression, which conveys neuroprotection under neuroinflammation-related stress.


Assuntos
Regulação da Expressão Gênica , Inflamação/patologia , Proteína 2 de Ligação a Metil-CpG/metabolismo , Microglia/metabolismo , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Fosfosserina/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Técnicas de Cocultura , Interferon gama , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Fagocitose , Fosforilação , Transcrição Gênica , Zimosan
12.
Mol Neurodegener ; 15(1): 52, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917267

RESUMO

BACKGROUND: Microglia-specific genetic variants are enriched in several neurodegenerative diseases, including Alzheimer's disease (AD), implicating a central role for alterations of the innate immune system in the disease etiology. A rare coding variant in the PLCG2 gene (rs72824905, p.P522R) expressed in myeloid lineage cells was recently identified and shown to reduce the risk for AD. METHODS: To assess the role of the protective variant in the context of immune cell functions, we generated a Plcγ2-P522R knock-in (KI) mouse model using CRISPR/Cas9 gene editing. RESULTS: Functional analyses of macrophages derived from homozygous KI mice and wild type (WT) littermates revealed that the P522R variant potentiates the primary function of Plcγ2 as a Pip2-metabolizing enzyme. This was associated with improved survival and increased acute inflammatory response of the KI macrophages. Enhanced phagocytosis was observed in mouse BV2 microglia-like cells overexpressing human PLCγ2-P522R, but not in PLCγ2-WT expressing cells. Immunohistochemical analyses did not reveal changes in the number or morphology of microglia in the cortex of Plcγ2-P522R KI mice. However, the brain mRNA signature together with microglia-related PET imaging suggested enhanced microglial functions in Plcγ2-P522R KI mice. CONCLUSION: The AD-associated protective Plcγ2-P522R variant promotes protective functions associated with TREM2 signaling. Our findings provide further support for the idea that pharmacological modulation of microglia via TREM2-PLCγ2 pathway-dependent stimulation may be a novel therapeutic option for the treatment of AD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Fosfolipase C gama/genética , Animais , Técnicas de Introdução de Genes , Variação Genética , Humanos , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Microglia/imunologia , Fosfolipase C gama/imunologia
13.
Cells ; 9(11)2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33203136

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by aberrant amyloid-ß (Aß) and hyperphosphorylated tau aggregation. We have previously investigated the involvement of SEPTIN family members in AD-related cellular processes and discovered a role for SEPTIN8 in the sorting and accumulation of ß-secretase. Here, we elucidated the potential role of SEPTIN5, an interaction partner of SEPTIN8, in the cellular processes relevant for AD, including amyloid precursor protein (APP) processing and the generation of Aß. The in vitro and in vivo studies both revealed that the downregulation of SEPTIN5 reduced the levels of APP C-terminal fragments (APP CTFs) and Aß in neuronal cells and in the cortex of Septin5 knockout mice. Mechanistic elucidation revealed that the downregulation of SEPTIN5 increased the degradation of APP CTFs, without affecting the secretory pathway-related trafficking or the endocytosis of APP. Furthermore, we found that the APP CTFs were degraded, to a large extent, via the autophagosomal pathway and that the downregulation of SEPTIN5 enhanced autophagosomal activity in neuronal cells as indicated by altered levels of key autophagosomal markers. Collectively, our data suggest that the downregulation of SEPTIN5 increases the autophagy-mediated degradation of APP CTFs, leading to reduced levels of Aß in neuronal cells.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Autofagia/fisiologia , Proteínas de Ciclo Celular/metabolismo , Septinas/metabolismo , Animais , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Endocitose/fisiologia , Humanos , Camundongos , Camundongos Knockout , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Transporte Proteico/fisiologia , Septinas/genética
14.
Mol Neurodegener ; 15(1): 66, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33168021

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disease and type 2 diabetes (T2D) plays an important role in conferring the risk for AD. Although AD and T2D share common features, the common molecular mechanisms underlying these two diseases remain elusive. METHODS: Mice with different AD- and/or tauopathy-linked genetic backgrounds (APPswe/PS1dE9, Tau P301L and APPswe/PS1dE9/Tau P301L) were fed for 6 months with standard diet or typical Western diet (TWD). After behavioral and metabolic assessments of the mice, the effects of TWD on global gene expression as well as dystrophic neurite and microglia pathology were elucidated. Consequently, mechanistic aspects related to autophagy, cell survival, phagocytic uptake as well as Trem2/Dap12 signaling pathway, were assessed in microglia upon modulation of PI3K-Akt signaling. To evaluate whether the mouse model-derived results translate to human patients, the effects of diabetic phenotype on microglial pathology were assessed in cortical biopsies of idiopathic normal pressure hydrocephalus (iNPH) patients encompassing ß-amyloid pathology. RESULTS: TWD led to obesity and diabetic phenotype in all mice regardless of the genetic background. TWD also exacerbated memory and learning impairment in APPswe/PS1dE9 and Tau P301L mice. Gene co-expression network analysis revealed impaired microglial responses to AD-related pathologies in APPswe/PS1dE9 and APPswe/PS1dE9/Tau P301L mice upon TWD, pointing specifically towards aberrant microglial functionality due to altered downstream signaling of Trem2 and PI3K-Akt. Accordingly, fewer microglia, which did not show morphological changes, and increased number of dystrophic neurites around ß-amyloid plaques were discovered in the hippocampus of TWD mice. Mechanistic studies in mouse microglia revealed that interference of PI3K-Akt signaling significantly decreased phagocytic uptake and proinflammatory response. Moreover, increased activity of Syk-kinase upon ligand-induced activation of Trem2/Dap12 signaling was detected. Finally, characterization of microglial pathology in cortical biopsies of iNPH patients revealed a significant decrease in the number of microglia per ß-amyloid plaque in obese individuals with concomitant T2D as compared to both normal weight and obese individuals without T2D. CONCLUSIONS: Collectively, these results suggest that diabetic phenotype in mice and humans mechanistically associates with abnormally reduced microglial responses to ß-amyloid pathology and further suggest that AD and T2D share overlapping pathomechanisms, likely involving altered immune function in the brain.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Diabetes Mellitus Tipo 2/patologia , Microglia/patologia , Placa Amiloide/patologia , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Camundongos , Microglia/metabolismo , Fenótipo
15.
Neurobiol Aging ; 84: 98-108, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31522136

RESUMO

Early identification and treatment of Alzheimer's disease (AD) is hampered by the lack of easily accessible biomarkers. Currently available fluid biomarkers of AD provide indications of the disease stage; however, these are measured in the cerebrospinal fluid, requiring invasive procedures, which are not applicable at the population level. Thus, gene expression profiling of blood provides a viable alternative as a way to screen individuals at risk of AD. Previous studies have shown that despite the limited permeability of the blood-brain barriers, expression profiles of blood genes can be used for the diagnosis and prognosis of several brain disorders. Here, we propose a new approach to pathway analysis of blood gene expression profiles to classify healthy (control [CTL]), mildly cognitively impaired (mild cognitive impairment [MCI]; preclinical stage of AD), and AD subjects. In the pathway analysis, gene expression data are mapped to pathway scores according to a predefined gene set instead of considering each gene separately. The robustness of the analysis enables detection of weak differences between groups owing to the inherent dimension reduction. Our proposed method for pathway analysis takes advantage of linear discriminant analysis for identifying a linear combination of features best separating groups of subjects within each gene set. The gene expression data were retrieved from Gene Expression Omnibus (batch 1: GSE63060; batch 2: GSE63061). Predefined gene sets for pathway analysis were obtained from the Broad Institute Collection of Curated Pathways. The method achieved a 10-fold cross-validated area under receiver operating characteristic curve of 0.84 for classification of AD versus CTL and 0.80 for classification of mild cognitive impairment versus CTL. These results reveal the good potential of blood-based biomarkers for assisting early diagnosis and disease monitoring of AD.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Expressão Gênica , Biomarcadores/sangue , Humanos
16.
Front Neurosci ; 13: 629, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275108

RESUMO

Alzheimer's disease (AD) and type 2 diabetes (T2D) are both diseases with increasing prevalence in aging populations. T2D, characterized by insulin resistance and defective insulin signaling, is a common co-morbidity and a risk factor for AD, increasing the risk approximately two to fourfold. Insulin exerts a wide variety of effects as a growth factor as well as by regulating glucose, fatty acid, and protein metabolism. Certain lifestyle factors, physical inactivity and typical Western diet (TWD) containing high fat and high sugar are strongly associated with insulin resistance and T2D. The PI3K-Akt signaling pathway is a major mediator of effects of insulin and plays a crucial role in T2D pathogenesis. Decreased levels of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) subunits as well as blunted Akt kinase phosphorylation have been observed in the AD brain, characterized by amyloid-ß and tau pathologies. Furthermore, AD mouse models fed with TWD have shown to display altered levels of PI3K subunits. How impaired insulin-PI3K-Akt signaling in peripheral tissues or in the central nervous system (CNS) affects the development or progression of AD is currently poorly understood. Interestingly, enhancement of PI3K-Akt signaling in the CNS by intranasal insulin (IN) treatment has been shown to improve memory in vivo in mice and in human trials. Insulin is known to augment neuronal growth and synapse formation through the PI3K-Akt signaling pathway. However, PI3K-Akt pathway mediates signaling related to different functions also in other cell types, like microglia and astrocytes. In this review, we will discuss the most prominent molecular mechanisms related to the PI3K-Akt pathway in AD and how T2D and altered insulin signaling may affect the pathogenesis of AD.

17.
Front Neurosci ; 13: 486, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156371

RESUMO

Frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative diseases with a complex, but often overlapping, genetic and pathobiological background and thus they are considered to form a disease spectrum. Although neurons are the principal cells affected in FTLD and ALS, increasing amount of evidence has recently proposed that other central nervous system-resident cells, including microglia and astrocytes, may also play roles in neurodegeneration in these diseases. Therefore, deciphering the mechanisms underlying the disease pathogenesis in different types of brain cells is fundamental in order to understand the etiology of these disorders. The major genetic cause of FTLD and ALS is a hexanucleotide repeat expansion (HRE) in the intronic region of the C9orf72 gene. In neurons, specific pathological hallmarks, including decreased expression of the C9orf72 RNA and proteins and generation of toxic RNA and protein species, and their downstream effects have been linked to C9orf72 HRE-associated FTLD and ALS. In contrast, it is still poorly known to which extent these pathological changes are presented in other brain cells. Here, we summarize the current literature on the potential role of astrocytes and microglia in C9orf72 HRE-linked FTLD and ALS and discuss their possible phenotypic alterations and neurotoxic mechanisms that may contribute to neurodegeneration in these diseases.

18.
Neurobiol Aging ; 75: 98-108, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30554086

RESUMO

Type 2 diabetes mellitus (T2DM) increases the risk for Alzheimer's disease (AD). Human AD brains show reduced glucose metabolism as measured by [18F]fluoro-2-deoxy-2-D-glucose positron emission tomography (FDG-PET). Here, we used 14-month-old wild-type (WT) and APPSwe/PS1dE9 (APP/PS1) transgenic mice to investigate how a single dose of intranasal insulin modulates brain glucose metabolism using FDG-PET and affects spatial learning and memory. We also assessed how insulin influences the activity of Akt1 and Akt2 kinases, the expression of glial and neuronal markers, and autophagy in the hippocampus. Intranasal insulin moderately increased glucose metabolism and specifically activated Akt2 and its downstream signaling in the hippocampus of WT, but not APP/PS1 mice. Furthermore, insulin differentially affected the expression of homeostatic microglia markers P2ry12 and Cx3cr1 and autophagy in the hippocampus of WT and APP/PS1 mice. We found no evidence that a single dose of intranasal insulin improves overnight memory. Our results suggest that intranasal insulin exerts diverse effects on Akt2 signaling, autophagy, and the homeostatic status of microglia depending on the degree of AD-related pathology.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Insulina/metabolismo , Memória/efeitos dos fármacos , Camundongos , Neurônios/metabolismo , Presenilina-1/metabolismo
19.
Ann Clin Transl Neurol ; 5(10): 1229-1240, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30349858

RESUMO

OBJECTIVE: Apolipoprotein E (APOE) ε4 allele is a well-established risk factor in Alzheimer's disease (AD). Here, we assessed the effects of APOE polymorphism on cardiovascular, metabolic, and inflammation-related parameters in population-based cohorts. METHODS: Association of cardiovascular, metabolic, and inflammation-related parameters with the APOE polymorphism in a large Finnish Metabolic Syndrome in Men (METSIM) cohort and Finnish Geriatric Intervention study to prevent cognitive impairment and disability (FINGER) were investigated. Brain-specific effects were addressed in postmortem brain samples. RESULTS: Individuals carrying the APOE ε4 allele displayed significantly elevated serum/plasma LDL cholesterol and apolipoprotein B levels. APOE ε3ε4 and ε4ε4 significantly associated with lower levels of plasma high-sensitivity C-reactive protein (hs-CRP). Plasma amyloid-ß 42 (Aß42) and reduced hs-CRP levels showed an association independently of the APOE status. INTERPRETATION: These data suggest that the APOE ε4 allele associates with lower levels of hs-CRP in individuals without dementia. Moreover, Aß42 may encompass anti-inflammatory effects reflected by reduced hs-CRP levels.

20.
J Alzheimers Dis ; 62(1): 269-278, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29439323

RESUMO

A subset of C9orf72 repeat expansion-carrying frontotemporal dementia patients display an Alzheimer-like decrease in cerebrospinal fluid amyloid-ß (Aß) biomarker levels. We report that downregulation of C9orf72 in non-neuronal human cells overexpressing amyloid-ß protein precursor (AßPP) resulted in increased levels of secreted AßPP fragments and Aß, while levels of AßPP or its C-terminal fragments (CTFs) remained unchanged. In neuronal cells, AßPP and C83 CTF levels were decreased upon C9orf72 knockdown, but those of secreted AßPP fragments or Aß remained unchanged. C9orf72 protein levels significantly increased in human brain with advancing neurofibrillary pathology and positively correlated with brain Aß42 levels. Our data suggest that altered C9orf72 levels may lead to cell-type specific alterations in AßPP processing, but warrant further studies to clarify the underlying mechanisms.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Proteína C9orf72/metabolismo , Encéfalo/patologia , Proteína C9orf72/genética , Linhagem Celular Tumoral , Estudos de Coortes , Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Neurônios/metabolismo , Neurônios/patologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA