RESUMO
Lipophilicity is one of the key properties of a potential drug that determines the solubility, the ability to penetrate through cell barriers, and transport to the molecular target. It affects pharmacokinetic processes such as adsorption, distribution, metabolism, excretion (ADME). The 10-substituted 1,9-diazaphenothiazines show promising if not impressive in vitro anticancer potential, which is associated with the activation of the mitochondrial apoptosis pathway connected with to induction BAX, forming a channel in MOMP and releasing cytochrome c for the activation of caspases 9 and 3. In this publication, the lipophilicity of previously obtained 1,9-diazaphenothiazines was determined theoretically using various computer programs and experimentally using reverse-phase thin-layer chromatography (RP-TLC) and a standard curve. The study presents other physicochemical, pharmacokinetic, and toxicological properties affecting the bioavailability of the test compounds. ADME analysis was determined in silico using the SwissADME server. Molecular targets studies were identified in silico using the SwissTargetPrediction server. Lipinski's rule of five, Ghose's, and Veber's rules were checked for the tested compounds, confirming their bioavailability.
Assuntos
Cromatografia de Fase Reversa , Adsorção , Cromatografia de Fase Reversa/métodos , Disponibilidade BiológicaRESUMO
Many new isomeric dipyridothiazine dimers have been presented as molecules with anticancer potential. These compounds were obtained in efficient syntheses of 1,6-, 1,8-, 2,7- and 3,6-diazaphenothiazines with selected alkylaromatic linkers. The structures of these compounds has been proven with two-dimensional spectroscopic techniques (COSY, NOESY, HSQC and HMBC) and high-resolution mass spectrometry (HRMS). In silico analyses of probable molecular targets were performed using the Way2Drug server. All new dimers were tested for anticancer activity against breast cancer line MCF7 and colon cancer line SW480. Cytotoxicity was assessed on normal L6 muscle cells. The tested dimers had high anticancer potential expressed as IC50 and the selectivity index SI. The most active derivative, 4c, showed an IC50 activity of less than 1 µM and an SI selectivity index higher than 100. Moreover, the compounds were characterized by low toxicity towards normal cells, simultaneously indicating a high cytostatic potential.
Assuntos
Antineoplásicos , Antineoplásicos/química , Espectroscopia de Ressonância Magnética , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
Lipophilicity is an essential parameter of a compound that determines the solubility and pharmacokinetic properties that determine the transport of the drug to the molecular target. Dimers of dipyridothiazines are diazaphenothiazine derivatives exhibiting diverse anticancer potential in vitro, which is related to their affinity for histone deacetylase. In this study, the lipophilicity of 16 isomeric dipyridothiazine dimers was investigated theoretically and experimentally by reversed-phase thin-layer chromatography (RP-TLC) in an acetone-TRIS buffer (pH = 7.4). The relative lipophilicity parameter RM0 and specific hydrophobic surface area b were significantly intercorrelated, showing congeneric classes of dimers. The parameter RM0 was transformed into parameter logPTLC by use of the calibration curve. Molecular descriptors, ADMET parameters and probable molecular targets were determined in silico for analysis of the pharmacokinetic profile of the tested compounds showing anticancer activity. The analyzed compounds were tested in the context of Lipinski's rule of five, Ghose's rule and Veber's rule, confirming their bioavailability.