Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38203772

RESUMO

Fluorinated proton-exchange membranes (PEMs) based on graft copolymers of dehydrofluorinated polyvinylidene fluoride (D-PVDF), 3-sulfopropyl acrylate (SPA), and 1H, 1H, 2H-perfluoro-1-hexene (PFH) were prepared via free radical copolymerization and characterized for fuel cell application. The membrane morphology and physical properties were studied via small-(SAXS) and wide-angle X-ray scattering (WAXS), SEM, and DSC. It was found that the crystallinity degree is 17% for PEM-RCF (co-polymer with SPA) and 16% for PEM-RCF-2 (copolymer with SPA and PFH). The designed membranes possess crystallite grains of 5-6 nm in diameter. SEM images reveal a structure with open pores on the surface of diameters from 20 to 140 nm. Their transport and electrochemical characterization shows that the lowest membrane area resistance (0.9 Ωcm2) is comparable to perfluorosulfonic acid PEMs (such as Nafion®) and polyvinylidene fluoride (PVDF) based CJMC cation-exchange membranes (ChemJoy Polymer Materials, China). Key transport and physicochemical properties of new and commercial membranes were compared. The PEM-RCF permeability to NaCl diffusion is rather high, which is due to a relatively low concentration of fixed sulfonate groups. Voltammetry confers that the electrochemical behavior of new PEM correlates to that of commercial cation-exchange membranes, while the ionic conductivity reveals an impact of the extended pores, as in track-etched membranes.


Assuntos
Alcenos , Polímeros de Fluorcarboneto , Polímeros , Polivinil , Prótons , Porosidade , Espalhamento a Baixo Ângulo , Difração de Raios X , Acrilatos
2.
Molecules ; 28(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38138492

RESUMO

This work presents the synthesis and self-organization of the calamitic fluorinated mesogen, 1,1,2,2-tetrafluoro-2-(1,1,2,2-tetrafluoro-4-iodobutoxy)ethanesulfonic acid, a potential model for perfluorosulfonic acid membranes (PFSA). The compound is derived in three steps from 1,1,2,2-tetrafluoro-2-(1,1,2,2-tetrafluoro-2-iodoethoxy)ethanesulfonyl fluoride, achieving a 78% overall yield. The resulting compound exhibits intricate thermal behavior. At 150 °C, a crystal-to-crystal transition is observed due to the partial disordering of calamitic molecules, which is followed by isotropization at 218 °C. Upon cooling, sample ordering occurs through the formation of large smectic liquid crystalline phase domains. This thermotropic state transforms into a layered crystal phase at lower temperatures, characterized by alternating hydrophilic and hydrophobic layers. Using X-ray diffraction, crystalline unit cell models at both room temperature and 170 °C were proposed. Computer simulations of the molecule across varying temperatures support the idea that thermal transitions correlate with a loss of molecular orientation. Importantly, the study underscores the pivotal role of precursor self-organization in aligning channels during membrane fabrication, ensuring controlled and oriented positioning.

3.
J Colloid Interface Sci ; 678(Pt A): 458-469, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39213998

RESUMO

Multi-responsive polymeric nanocontainers attract significant attention for their potential applications in biotechnology, drug delivery, catalysis, and other fields. By incorporating a liquid-crystalline (LC) mesogenic ligand with an alkyl tail length ranging from 8-12 carbons, ionically linked to the polymer backbone, we generate vesicles with walls significantly thinner than those of conventional polymersomes, approaching the thickness of a lipid bilayer. These LC vesicles, ranging in size from 50-120 nm, are designed to be mechanically robust due to the alignment of the hydrophilic polymer backbone within the plane of the vesicle wall. Additionally, incorporating a temperature-sensitive block into the polymer structure imparts thermoresponsiveness to the nanocontainers, enhancing their functionality and adaptability for various applications. Ionic complexes of hydrophilic polybases, specifically poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and PDMAEMA-b-PNIPAM (poly(N-isopropylacrylamide)) block copolymers, with amphiphilic wedge-shaped mesogens bearing a sulfonic acid group at the focal point were synthesized. The designed nanocontainers, in the form of either vesicles or nanotubes, exhibit a well-defined wall thickness of 5 nm, dictated by the organization of a smectic LC phase. The constructed coarse-grained models elucidate the mechanism of self-assembly, demonstrating that the balance between the hydrophilicity of the main polymer chain and the hydrophobicity of the wedge-shaped pendant groups determines both the internal and external structure of the vesicles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA