Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 8176, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39289358

RESUMO

The Claustrum/dorsal endopiriform cortex complex (CLA) is an enigmatic brain region with extensive glutamatergic projections to multiple cortical areas. The transcription factor Nurr1 is highly expressed in the CLA, but its role in this region is not understood. By using conditional gene-targeted mice, we show that Nurr1 is a crucial regulator of CLA neuron identity. Although CLA neurons remain intact in the absence of Nurr1, the distinctive gene expression pattern in the CLA is abolished. CLA has been hypothesized to control hallucinations, but little is known of how the CLA responds to hallucinogens. After the deletion of Nurr1 in the CLA, both hallucinogen receptor expression and signaling are lost. Furthermore, functional ultrasound and Neuropixel electrophysiological recordings revealed that the hallucinogenic-receptor agonists' effects on functional connectivity between prefrontal and sensorimotor cortices are altered in Nurr1-ablated mice. Our findings suggest that Nurr1-targeted strategies provide additional avenues for functional studies of the CLA.


Assuntos
Claustrum , Alucinógenos , Neurônios , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , Animais , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Camundongos , Alucinógenos/farmacologia , Claustrum/metabolismo , Neurônios/metabolismo , Masculino , Camundongos Knockout , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Córtex Sensório-Motor/metabolismo , Córtex Sensório-Motor/fisiologia
2.
Nat Commun ; 15(1): 4778, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862479

RESUMO

Impairment of the central nervous system (CNS) poses a significant health risk for astronauts during long-duration space missions. In this study, we employed an innovative approach by integrating single-cell multiomics (transcriptomics and chromatin accessibility) with spatial transcriptomics to elucidate the impact of spaceflight on the mouse brain in female mice. Our comparative analysis between ground control and spaceflight-exposed animals revealed significant alterations in essential brain processes including neurogenesis, synaptogenesis and synaptic transmission, particularly affecting the cortex, hippocampus, striatum and neuroendocrine structures. Additionally, we observed astrocyte activation and signs of immune dysfunction. At the pathway level, some spaceflight-induced changes in the brain exhibit similarities with neurodegenerative disorders, marked by oxidative stress and protein misfolding. Our integrated spatial multiomics approach serves as a stepping stone towards understanding spaceflight-induced CNS impairments at the level of individual brain regions and cell types, and provides a basis for comparison in future spaceflight studies. For broader scientific impact, all datasets from this study are available through an interactive data portal, as well as the National Aeronautics and Space Administration (NASA) Open Science Data Repository (OSDR).


Assuntos
Encéfalo , Neurônios , Voo Espacial , Animais , Camundongos , Feminino , Encéfalo/metabolismo , Encéfalo/patologia , Neurônios/metabolismo , Transcriptoma , Neurogênese , Análise de Célula Única , Camundongos Endogâmicos C57BL , Transmissão Sináptica , Ausência de Peso/efeitos adversos , Astrócitos/metabolismo , Estresse Oxidativo , Perfilação da Expressão Gênica , Multiômica
3.
Nat Commun ; 14(1): 6500, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838705

RESUMO

Several important human infectious diseases are caused by microscale-sized parasitic nematodes like filarial worms. Filarial worms have their own spatial tissue organization; to uncover this tissue structure, we need methods that can spatially resolve these miniature specimens. Most filarial worms evolved a mutualistic association with endosymbiotic bacteria Wolbachia. However, the mechanisms underlying the dependency of filarial worms on the fitness of these bacteria remain unknown. As Wolbachia is essential for the development, reproduction, and survival of filarial worms, we spatially explored how Wolbachia interacts with the worm's reproductive system by performing a spatial characterization using Spatial Transcriptomics (ST) across a posterior region containing reproductive tissue and developing embryos of adult female Brugia malayi worms. We provide a proof-of-concept for miniature-ST to explore spatial gene expression patterns in small sample types, demonstrating the method's ability to uncover nuanced tissue region expression patterns, observe the spatial localization of key B. malayi - Wolbachia pathway genes, and co-localize the B. malayi spatial transcriptome in Wolbachia tissue regions, also under antibiotic treatment. We envision our approach will open up new avenues for the study of infectious diseases caused by micro-scale parasitic worms.


Assuntos
Doenças Transmissíveis , Parasitos , Wolbachia , Animais , Feminino , Humanos , Parasitos/genética , Transcriptoma , Antibacterianos/metabolismo , Perfilação da Expressão Gênica , Wolbachia/genética , Wolbachia/metabolismo , Simbiose/genética
4.
Genome Biol ; 24(1): 237, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858234

RESUMO

Technologies to study localized host-pathogen interactions are urgently needed. Here, we present a spatial transcriptomics approach to simultaneously capture host and pathogen transcriptome-wide spatial gene expression information from human formalin-fixed paraffin-embedded (FFPE) tissue sections at a near single-cell resolution. We demonstrate this methodology in lung samples from COVID-19 patients and validate our spatial detection of SARS-CoV-2 against RNAScope and in situ sequencing. Host-pathogen colocalization analysis identified putative modulators of SARS-CoV-2 infection in human lung cells. Our approach provides new insights into host response to pathogen infection through the simultaneous, unbiased detection of two transcriptomes in FFPE samples.


Assuntos
COVID-19 , Transcriptoma , Humanos , Fixação de Tecidos , Formaldeído , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA