RESUMO
Fructose-6-phosphate aldolase (FSA) is an important enzyme for the C-C bond-forming reactions in organic synthesis. The present work is focused on the synthesis of a precursor of D-fagomine catalyzed by a mutant FSA. The biocatalyst has been immobilized onto several supports: magnetic nanoparticle clusters (mNC), cobalt-chelated agarose (Co-IDA), amino-functionalized agarose (MANA-agarose) and glyoxal-agarose, obtaining a 29.0%, 93.8%, 89.7% and 53.9% of retained activity, respectively. Glyoxal-agarose FSA derivative stood up as the best option for the synthesis of the precursor of D-fagomine due to the high reaction rate, conversion, yield and operational stability achieved. FSA immobilized in glyoxal-agarose could be reused up to 6 reaction cycles reaching a 4-fold improvement in biocatalyst yield compared to the non-immobilized enzyme.
Assuntos
Aldeído Liases/química , Enzimas Imobilizadas/química , Imino Piranoses/química , Nanopartículas de Magnetita/química , Aldeído Liases/metabolismo , Catálise , Cobalto/química , Enzimas Imobilizadas/metabolismo , Escherichia coli/enzimologia , Frutosefosfatos/metabolismo , Imino Piranoses/síntese química , Sefarose/químicaRESUMO
This data article is related to the subject of a publication in Process Biochemistry, entitled "Chloroperoxidase-catalyzed amino alcohol oxidation: Substrate specificity and novel strategy for the synthesis of N-Cbz-3-aminopropanal" (Masdeu et al., 2016) [1]. Here, the products of the chemical reaction involving the amino aldehyde (N-Cbz-3-aminopropanal) and peroxides (tert-butyl hydroperoxide and H2O2) are characterized by NMR. (1)H and (13)C NMR full characterization of the products was obtained based on 2D NMR, 1D selective NOESY and diffusion spectroscopy (DOSY) experiments.