Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38767794

RESUMO

Macroalgae provide key contributions to aquatic ecosystems, including their role as primary producers and the provision of biotopes for marine organisms, fish spawning, and fish nurseries. The aim of this study was to evaluate the feasibility of a micronucleus test and a comet assay in Ceramium tenuicorne, a red macroalga. This alga is widely distributed in marine ecosystems and brackish waters, and is therefore a potential bioindicator of the effects of anthropogenic pollution in these ecosystems. Unfortunately, the two genotoxicity tests evaluated were not suitable for this alga because the nuclei are generally very small (between 2 and 10 µm), are variable in size, and there may be several nuclei in each cell (between 1 and 5 in our observations). However, the present study allowed us to define conditions for observing these algal cells and optimizing the choice of DNA dye (orcein), cell fixation solution (Carnoy's solution), and hydrolysis step (HCl, 1200 mmol/L solution for 1 min). This research allowed us to propose two genotoxicity and cytotoxicity endpoints for assessing chemical effects on the algal cells: counting of nuclei in cortical cell areas, and the frequency of axial cells in mitosis. These two criteria were measured after exposing C. tenuicorne to two reference substances: cadmium chloride and maleic hydrazide, and we highlight the effects from 1 × 10-5 M of CdCl2 and 5 × 10-5 M of maleic hydrazide.

2.
J Hazard Mater ; 467: 133646, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38330651

RESUMO

The exposure of terrestrial organisms to soils freshly contaminated by polycyclic aromatic compounds (PACs, including PAHs and polar-PACs) is known to cause significant toxicity effects. However, historically contaminated soils, such as former coking plant soils, usually induce a limited toxic impact, due to the "aging" phenomenon which is the result of several processes causing a reduction of PAC availability over time. For a better understanding of these behaviors, this study aimed to compare the toxic responses of terrestrial organisms exposed to aged contaminated soils and their counterparts submitted to a moderate heating process applied to increase PAC availability. Two aged "raw" soils (limited PAC availability) were selected for their representativeness of former industrial soils in terms of PAC contamination. These soils were submitted either to moderate heating (expected PAC availability increase) or solvent-extraction (expected PAC removal). Physico-chemical parameters, contamination levels and availability were determined for these three soil modalities. Additionally, standardized limit bioassays on plants and earthworms were performed to assess soil ecotoxicity. The findings demonstrated that historically contaminated soils exposed to moderate heating induced the highest ecotoxic responses from terrestrial organisms. Heating increased PAC (bio)availability, without modifying any other soil physico-chemical properties. These results pointed out the importance of considering the contamination availability parameter in risk evaluation and also provide a possible tool for protective long-term risk assessment.


Assuntos
Coque , Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Poluição Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA