Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artif Organs ; 20(5): 582-590, 1996 May.
Artigo em Inglês | MEDLINE | ID: mdl-28868709

RESUMO

This article describes a prototype continuous flow pump (CFVAD2) fully supported in magnetic bearings. The pump performance was measured in a simulated adult human circulation system. The pump delivered 6 L/min of flow at 100 mm Hg of differential pressure head operating at 2,400 rpm in water. The pump is totally supported in 4 magnetic bearings: 2 radial and 2 thrust. Magnetic bearings offer the advantages of no required lubrication and large operating clearances. The geometry and other properties of the bearings are described. Bearing parameters such as load capacity and current gains are discussed. Bearing coil currents were measured during operation in air and water. The rotor was operated in various orientations to determine the actuator current gains. These values were then used to estimate the radial and thrust forces acting on the rotor in both air and water. Much lower levels of force were found than were expected, allowing for a very significant reduction in the size of the next prototype. Hemolysis levels were measured in the prototype pump and found not to indicate damage to the blood cells.

2.
ASAIO J ; 41(3): M359-64, 1995.
Artigo em Inglês | MEDLINE | ID: mdl-8573825

RESUMO

A magnetically suspended continuous flow ventricular assist device using magnetic bearings was developed aiming at an implantable ventricular assist device. The main advantage of this device includes no mechanical wear and minimal chance of blood trauma such, as thrombosis and hemolysis, because there is no mechanical contact between the stationary and rotating parts. The total system consists of two subsystems: the centrifugal pump and the magnetic bearing. The centrifugal pump is comprised of a 4 vane logarithmic spiral radial flow impeller and a brushless DC motor with slotless stator, driven by the back emf commutation scheme. Two radial and one thrust magnetic bearing that dynamically controls the position of the rotor in a radial and axial direction, respectively, contains magnetic coils, the rotor's position sensors, and feedback electronic control system. The magnetic bearing system was able to successfully suspend a 365.5g rotating part in space and sustain it for up to 5000 rpm of rotation. Average force-current square factor of the magnetic bearing was measured as 0.48 and 0.44 (kg-f/Amp2) for radial and thrust bearing, respectively. The integrated system demonstrated adequate performance in mock circulation tests by providing a 6 L/min flow rate against 100 mmHg differential pressure at 2300 rpm. Based on these in vitro performance test results, long-term clinical application of the magnetically suspended continuous flow ventricular assist device is very promising after system optimization with a hybrid system using both active (electromagnet) and passive (permanent magnets) magnet bearings.


Assuntos
Coração Auxiliar , Fenômenos Biomecânicos , Engenharia Biomédica , Centrifugação/instrumentação , Desenho de Equipamento , Estudos de Avaliação como Assunto , Humanos , Técnicas In Vitro , Magnetismo
3.
ASAIO J ; 42(4): 275-81, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-8828784

RESUMO

A continuous flow centrifugal blood pump with magnetically suspended impeller has been designed, constructed, and tested. The system can be functionally divided into three subsystem designs: 1) centrifugal pump and flow paths, 2) magnetic bearings, and 3) brushless DC motor. The centrifugal pump is a Francis vane type design with a designed operating point of 6 L/min flow and 100 mmHg pressure rise at 2,300 RPM. Peak hydraulic efficiency is over 50%. The magnetic bearing system is an all active design with five axes of control. Rotor position sensors were developed as part of the system to provide feedback to a proportional-integral-derivative controller. The motor is a sensorless brushless DC motor. Back electromotive force voltage generated by the motor is used to provide commutation for the motor. No slots are employed in the motor design in order to reduce the radial force that the bearings must generate. Tests pumping blood in vitro were very encouraging; an index of hemolysis of 0.0086 +/- 0.0012 was measured. Further design refinement is needed to reduce power dissipation and size of the device. The concept of using magnetic bearings in a blood pump shows promise in a long-term implantable blood pump.


Assuntos
Coração Auxiliar , Volume Sanguíneo/fisiologia , Centrifugação , Campos Eletromagnéticos , Desenho de Equipamento/normas , Hematócrito , Hemólise
4.
ASAIO J ; 42(5): M620-4, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-8944955

RESUMO

A prototype bench top model of a continuous flow ventricular assist device using an impeller suspended by magnetic bearings has been developed. Generation of a pulsatile pressure was studied using both a computer model and in vitro loop tests of the prototype. The motivation for developing a computer model for a blood pump in the natural circulation is two-fold. First, it allows simulation of the pump under a large variety of operating conditions. Second, it provides insight into what parameters of the system design are important for achieving a specific result. For example, in one case, an aortic pressure of 118/87 mmHg was generated by varying the speed from 2,000 to 2,600 rpm. The computer model was verified by coupling the centrifugal pump prototype to a mock circulatory system. The results of the model were verified by generating an aortic pressure of 113/78 mmHg while varying the speed from 2,000 to 2,600 rpm. These experiments have shown that it is possible to generate pulsatile pressure similar to that of native physiology using a centrifugal left ventricular assist device. Further tests will be required to quantify the effects on hemolysis.


Assuntos
Coração Auxiliar , Engenharia Biomédica , Simulação por Computador , Desenho de Equipamento , Estudos de Avaliação como Assunto , Humanos , Técnicas In Vitro , Magnetismo , Fluxo Pulsátil
5.
ASAIO J ; 43(5): M598-603, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-9360115

RESUMO

A new continuous flow ventricular assist device (CFVAD III) using a full magnetic suspension has been constructed. The magnetic suspension centers the centrifugal impeller within the clearance passages in the pump, thus avoiding any contact. This noncontact operation gives very high expected mechanical reliability, large clearances, low hemolysis, low thrombosis, and relatively small size compared with current pulsatile devices. A unique configuration of a system of magnetic actuators on the inlet side and exit sides of the impeller gives full five axis control and suspension of the impeller. The bearing system is divided into segments that allow for three displacement axes and two angular control axes. For the first suspension tests, a decentralized set of proportional, derivative, and integral (PID) controllers acting along the modal coordinates are used to suspend the impeller. The controller design takes into account the blood forces acting on the magnetically suspended impeller, the unbalance forces on the impeller and gravitational loads during various body motions. In the final design, the bearing control axes will be coupled together through fluidic forces so the electronic feedback controller is a centralized multiple input, multiple output controller. The control system design must be robust against these types of externally imposed loads to keep the impeller centered and avoid blood damage. This article discusses the dynamic model, controller, and controller implementation for the magnetic suspension controller of CFVAD III.


Assuntos
Coração Auxiliar , Magnetismo , Fenômenos Biomecânicos , Engenharia Biomédica , Simulação por Computador , Humanos , Modelos Teóricos , Desenho de Prótese
6.
Accid Anal Prev ; 42(4): 1398-407, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20441858

RESUMO

Optimal performance of adaptive restraint systems in the vehicle requires an accurate assessment of occupant characteristics including physical properties and pre-collision response of the occupant. To provide a feasible framework for incorporating occupant characteristics into adaptive restraint schemes, this study evaluates the sensitivity of injury risk in frontal collisions to four occupant parameters: mass, stature, posture and bracing level. The numerical approach includes using commercial multi-body software to develop occupant models that span a range of occupant parameters representative of the real-world driver population. Coupled with a multi-body model of the vehicle interior and standard restraint system, risk of occupant injuries within specific body regions are predicted through numerical simulations in conjunction with established injury risk functions. The results show occupant posture to be the most significant parameter affecting the overall risk of injury in frontal collisions. The causal relationship as predicted using the numerical model has been compared to the traffic injury epidemiology findings, and the feasibility of an analytical methodology to provide real-time estimates of injury severity has been discussed. Preliminary estimates from the study indicate that the proposed methodology will provide a framework to optimize restraint performance and potentially reduce the risk of injuries up to 35% (based on parameter-specific optimization), using accurate information regarding the pre-collision occupant characteristics.


Assuntos
Acidentes de Trânsito/estatística & dados numéricos , Ferimentos e Lesões/etiologia , Ferimentos e Lesões/fisiopatologia , Adulto , Fenômenos Biomecânicos , Índice de Massa Corporal , Tamanho Corporal , Simulação por Computador , Humanos , Masculino , Modelos Biológicos , Contração Muscular , Postura , Tempo de Reação , Fatores de Risco , Cintos de Segurança
8.
Acta Crystallogr B ; 57(Pt 2): 136-41, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11262427

RESUMO

Structure factors for Er(3)Al(5)O(12) and Yb(3)Al(5)O(12) garnets were measured using focused synchrotron X-radiation, with lambda = 0.7500 (2) and 0.7000 (2) A, respectively. The difference electron density maps for Er(3)Al(5)O(12) and Yb(3)Al(5)O(12) were similar, as expected. This was attributed to the 4f electrons being shielded, which reduces their effectiveness in chemical bonding and the relative position of the rare-earth atoms in the periodic table. The symmetry of the difference electron density around the rare-earth atoms was found to reflect that of the cation geometry, emphasizing the importance of second nearest-neighbor interactions. This is consistent with the view that oxide-type structures may be regarded as a packed array of cations with anions in the interstices.

9.
Artif Organs ; 20(6): 597-604, 1996 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-8817963

RESUMO

Clinically available blood pumps and those under development suffer from poor mechanical reliability and poor biocompatibility related to anatomic fit, hemolysis, and thrombosis. To alleviate these problems concurrently in a long-term device is a substantial challenge. Based on testing the performance of a prototype, and on our judgment of desired characteristics, we have configured an innovative ventricular assist device, the CFVAD4, for long-term use. The design process and its outcome, the CFVAD4 system configuration, is described. To provide unprecedented reliability and biocompatibility, magnetic bearings completely suspend the rotating pump impeller. The CFVAD4 uses a combination of passive (permanent) and active (electric) magnetic bearings, a mixed flow impeller, and a slotless 3-phase brushless DC motor. These components are shaped, oriented, and integrated to provide a compact, implantable, pancake-shaped unit for placement in the left upper abdominal quadrant of adult humans.


Assuntos
Desenho de Equipamento/tendências , Coração Auxiliar , Materiais Biocompatíveis , Fenômenos Biomecânicos , Velocidade do Fluxo Sanguíneo/fisiologia , Campos Eletromagnéticos , Hemólise , Fluxo Pulsátil , Trombose/prevenção & controle
10.
Artif Organs ; 20(6): 582-90, 1996 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-8817961

RESUMO

This article describes a prototype continuous flow pump (CFVAD2) fully supported in magnetic bearings. The pump performance was measured in a simulated adult human circulation system. The pump delivered 6 L/min of flow at 100 mm Hg of differential pressure head operating at 2,400 rpm in water. The pump is totally supported in 4 magnetic bearings: 2 radial and 2 thrust. Magnetic bearings offer the advantages of no required lubrication and large operating clearances. The geometry and other properties of the bearings are described. Bearing parameters such as load capacity and current gains are discussed. Bearing coil currents were measured during operation in air and water. The rotor was operated in various orientations to determine the actuator current gains. These values were then used to estimate the radial and thrust forces acting on the rotor in both air and water. Much lower levels of force were found than were expected, allowing for a very significant reduction in the size of the next prototype. Hemolysis levels were measured in the prototype pump and found not to indicate damage to the blood cells.


Assuntos
Coração Auxiliar , Animais , Fenômenos Biomecânicos , Velocidade do Fluxo Sanguíneo/fisiologia , Bovinos , Campos Eletromagnéticos , Eritrócitos/citologia , Eritrócitos/patologia , Coração Auxiliar/efeitos adversos , Coração Auxiliar/normas , Hemoglobinas/análise , Matemática , Modelos Teóricos , Pressão
11.
Artif Organs ; 22(6): 475-80, 1998 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9650668

RESUMO

A new centrifugal continuous flow ventricular assist device, the CFVAD III, which is fully magnetic bearing suspended, has been developed. It has only one moving part (the impeller), has no contact (magnetic suspension), is compact, and has minimal heating. A centrifugal impeller of 2 inch outer diameter is driven by a permanent magnet brushless DC motor. This paper discusses the design, construction, testing, and performance of the magnetic bearings in the unit. The magnetic suspension consists of an inlet side magnetic bearing and an outlet side magnetic bearing, each divided into 8 pole segments to control axial and radial displacements as well as angular displacements. The magnetic actuators are composed of several different materials to minimize size and weight while having sufficient load capacity to support the forces on the impeller. Flux levels in the range of 0.1 T are employed in the magnetic bearings. Self sensing electronic circuits (without physical sensors) are employed to determine the impellar position and provide the feedback control signal needed for the magnetic bearing control loops. The sensors provide position sensitivity of approximately 0.025 mm. A decentralized 5 axis controller has been developed using modal control techniques. Proportional integral derivative controls are used for each axis to levitate the magnetically supported impeller.


Assuntos
Coração Auxiliar , Magnetismo , Desenho de Prótese , Algoritmos , Simulação por Computador , Fontes de Energia Elétrica , Eletricidade , Eletrônica Médica/instrumentação , Retroalimentação , Hemorreologia , Temperatura Alta , Humanos , Teste de Materiais , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA