Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cureus ; 16(4): e57452, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38699125

RESUMO

Essential tremor (ET) is one of the most common adult movement disorders. As the worldwide population ages, the incidence and prevalence of ET is increasing. Although most cases can be managed conservatively, there is a subset of ET that is refractory to medical management. By virtue of being "reversible", deep brain stimulation (DBS) of the ventral intermediate nucleus (VIM) of the thalamus is one commonly accepted intervention. As an alternative to invasive and expensive DBS, there has been a renaissance in treating ET with lesion-based approaches, spearheaded most recently by high-intensity focused ultrasound (HIFU), the hallmark of which is that it is non-invasive. Meanwhile, stereotactic radiosurgical (SRS) lesioning of VIM represents another time-honored lesion-based non-invasive treatment of ET, which is especially well suited for those patients that cannot tolerate open neurosurgery and is now also getting a "second look". While multiple SRS platforms have been and continue to be used to treat ET, there is little in the way of dosimetric comparison between different technologies. In this brief technical report we compare the dosimetric profiles of three major radiosurgical platforms (Gamma Knife, CyberKnife Robotic Radiosurgery, and Zap-X Gyroscopic Radiosurgery (GRS)) for the treatment of ET. In general, the GRS and Gamma Knife were shown to have the best theoretical dosimetric profiles for VIM lesioning. Nevertheless the relevance of such superiority to clinical outcomes requires future patient studies.

2.
Med Phys ; 47(12): 6470-6483, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32981038

RESUMO

PURPOSE: Epidemiological evidence suggests an increased risk of cancer related to computed tomography (CT) scans, with children exposed to greater risk. The purpose of this work is to test the reliability of a linear Boltzmann transport equation (LBTE) solver for rapid and patient-specific CT dose estimation. This includes building a flexible LBTE framework for modeling modern clinical CT scanners and to validate the resulting dose maps across a range of realistic scanner configurations and patient models. METHODS: In this study, computational tools were developed for modeling CT scanners, including a bowtie filter, overrange collimation, and tube current modulation. The LBTE solver requires discretization in the spatial, angular, and spectral dimensions, which may affect the accuracy of scanner modeling. To investigate these effects, this study evaluated the LBTE dose accuracy for different discretization parameters, scanner configurations, and patient models (male, female, adults, pediatric). The method used to validate the LBTE dose maps was the Monte Carlo code Geant4, which provided ground truth dose maps. LBTE simulations were implemented on a GeForce GTX 1080 graphic unit, while Geant4 was implemented on a distributed cluster of CPUs. RESULTS: The agreement between Geant4 and the LBTE solver quantifies the accuracy of the LBTE, which was similar across the different protocols and phantoms. The results suggest that 18 views per rotation provides sufficient accuracy, as no significant improvement in the accuracy was observed by increasing the number of projection views. Considering this discretization, the LBTE solver average simulation time was approximately 30 s. However, in the LBTE solver the phantom model was implemented with a lower voxel resolution with respect to Geant4, as it is limited by the memory of the GPU. Despite this discretization, the results showed a good agreement between the LBTE and Geant4, with root mean square error of the dose in organs of approximately 3.5% for most of the studied configurations. CONCLUSIONS: The LBTE solver is proposed as an alternative to Monte Carlo for patient-specific organ dose estimation. This study demonstrated accurate organ dose estimates for the rapid LBTE solver when considering realistic aspects of CT scanners and a range of phantom models. Future plans will combine the LBTE framework with deep learning autosegmentation algorithms to provide near real-time patient-specific organ dose estimation.


Assuntos
Benchmarking , Tomografia Computadorizada por Raios X , Adulto , Criança , Feminino , Humanos , Masculino , Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação , Reprodutibilidade dos Testes
3.
Med Phys ; 46(2): 925-933, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30471131

RESUMO

PURPOSE: To improve dose reporting of CT scans, patient-specific organ doses are highly desired. However, estimating the dose distribution in a fast and accurate manner remains challenging, despite advances in Monte Carlo methods. In this work, we present an alternative method that deterministically solves the linear Boltzmann transport equation (LBTE), which governs the behavior of x-ray photon transport through an object. METHODS: Our deterministic solver for CT dose (Acuros CTD) is based on the same approach used to estimate scatter in projection images of a CT scan (Acuros CTS). A deterministic method is used to compute photon fluence within the object, which is then converted to deposited energy by multiplying by known, material-specific conversion factors. To benchmark Acuros CTD, we used the AAPM Task Group 195 test for CT dose, which models an axial, fan beam scan (10 mm thick beam) and calculates energy deposited in each organ of an anthropomorphic phantom. We also validated our own Monte Carlo implementation of Geant4 to use as a reference to compare Acuros against for other common geometries like an axial, cone beam scan (160 mm thick beam) and a helical scan (40 mm thick beam with table motion for a pitch of 1). RESULTS: For the fan beam scan, Acuros CTD accurately estimated organ dose, with a maximum error of 2.7% and RMSE of 1.4% when excluding organs with <0.1% of the total energy deposited. The cone beam and helical scans yielded similar levels of accuracy compared to Geant4. Increasing the number of source positions beyond 18 or decreasing the voxel size below 5 × 5 × 5 mm3 provided marginal improvement to the accuracy for the cone beam scan but came at the expense of increased run time. Across the different scan geometries, run time of Acuros CTD ranged from 8 to 23 s. CONCLUSIONS: In this digital phantom study, a deterministic LBTE solver was capable of fast and accurate organ dose estimates.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Órgãos em Risco/efeitos da radiação , Imagens de Fantasmas , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Simulação por Computador , Humanos , Modelos Teóricos , Método de Monte Carlo , Fótons , Radiometria/métodos
4.
Med Phys ; 45(5): 1899-1913, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29509970

RESUMO

PURPOSE: To describe Acuros® CTS, a new software tool for rapidly and accurately estimating scatter in x-ray projection images by deterministically solving the linear Boltzmann transport equation (LBTE). METHODS: The LBTE describes the behavior of particles as they interact with an object across spatial, energy, and directional (propagation) domains. Acuros CTS deterministically solves the LBTE by modeling photon transport associated with an x-ray projection in three main steps: (a) Ray tracing photons from the x-ray source into the object where they experience their first scattering event and form scattering sources. (b) Propagating photons from their first scattering sources across the object in all directions to form second scattering sources, then repeating this process until all high-order scattering sources are computed using the source iteration method. (c) Ray-tracing photons from scattering sources within the object to the detector, accounting for the detector's energy and anti-scatter grid responses. To make this process computationally tractable, a combination of analytical and discrete methods is applied. The three domains are discretized using the Linear Discontinuous Finite Elements, Multigroup, and Discrete Ordinates methods, respectively, which confer the ability to maintain the accuracy of a continuous solution. Furthermore, through the implementation in CUDA, we sought to exploit the parallel computing capabilities of graphics processing units (GPUs) to achieve the speeds required for clinical utilization. Acuros CTS was validated against Geant4 Monte Carlo simulations using two digital phantoms: (a) a water phantom containing lung, air, and bone inserts (WLAB phantom) and (b) a pelvis phantom derived from a clinical CT dataset. For these studies, we modeled the TrueBeam® (Varian Medical Systems, Palo Alto, CA) kV imaging system with a source energy of 125 kVp. The imager comprised a 600 µm-thick Cesium Iodide (CsI) scintillator and a 10:1 one-dimensional anti-scatter grid. For the WLAB studies, the full-fan geometry without a bowtie filter was used (with and without the anti-scatter grid). For the pelvis phantom studies, a half-fan geometry with bowtie was used (with the anti-scatter grid). Scattered and primary photon fluences and energies deposited in the detector were recorded. RESULTS: The Acuros CTS and Monte Carlo results demonstrated excellent agreement. For the WLAB studies, the average percent difference between the Monte Carlo- and Acuros-generated scattered photon fluences at the face of the detector was -0.7%. After including the detector response, the average percent differences between the Monte Carlo- and Acuros-generated scatter fractions (SF) were -0.1% without the grid and 0.6% with the grid. For the digital pelvis simulation, the Monte Carlo- and Acuros-generated SFs agreed to within 0.1% on average, despite the scatter-to-primary ratios (SPRs) being as high as 5.5. The Acuros CTS computation time for each scatter image was ~1 s using a single GPU. CONCLUSIONS: Acuros CTS enables a fast and accurate calculation of scatter images by deterministically solving the LBTE thus offering a computationally attractive alternative to Monte Carlo methods. Part II describes the application of Acuros CTS to scatter correction of CBCT scans on the TrueBeam system.


Assuntos
Algoritmos , Espalhamento de Radiação , Tomografia Computadorizada por Raios X , Humanos , Modelos Teóricos , Imagens de Fantasmas , Fatores de Tempo
5.
Med Phys ; 45(5): 1914-1925, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29509973

RESUMO

PURPOSE: To correct for scatter in kV cone-beam CT (CBCT) projection data on a clinical system using a new tool, Acuros® CTS, that estimates scatter images rapidly and accurately by deterministically solving the linear Boltzmann transport equation. METHODS: Phantom and patient CBCT scans were acquired on TrueBeam® radiotherapy machines. A first-pass reconstruction was used to create water and bone density maps of the imaged object, which was updated to include a more accurate representation of the patient couch. The imaging system model accounted for the TrueBeam x-ray source (polychromatic spectrum, beam filtration, bowtie filter, and collimation hardware) and x-ray detection system (antiscatter grid, flat-panel imager). Acuros CTS then used the system and object models to estimate the scatter component of each projection image, which was subtracted from the measured projections. The corrected projections were then reconstructed to produce the final result. We examined the tradeoff between run time and accuracy using a Pareto optimization of key parameters, including the voxel size of the down-sampled object model, the number of pixels in the down-sampled detector, and the number of scatter images (angular down-sampling). All computations and reconstructions were performed on a research workstation containing two graphics processing units (GPUs). In addition, we established a method for selecting a subset of projections for which scatter images were calculated. The projections were selected to minimize interpolation errors in the remaining projections. Image quality improvement was assessed by measuring the accuracy of the reconstructed phantom and patient images. RESULTS: The Pareto optimization yielded a set of parameters with an average run time of 26 seconds for scatter correction while maintaining high accuracy of scatter estimation. This was achieved in part by means of optimizing the projection angles that were processed, thus favoring the use of more angles in the lateral (i.e., horizontal) direction and fewer angles in the AP direction. In a 40 cm solid water phantom reconstruction, nonuniformities were decreased from 217 HU without scatter correction to 51 HU with conventional (kernel-based) scatter correction to 17 HU with Acuros CTS-based scatter correction. In clinical pelvis scans, nonuniformities in the bladder were reduced from 85 HU with conventional scatter correction to 14 HU with Acuros CTS. CONCLUSIONS: Acuros CTS is a promising new tool for fast and accurate scatter correction for CBCT imaging. By carefully modeling the imaging chain and optimizing several parameters, we achieved high correction accuracies with computation times compatible with the clinical workflow. The improvement in image quality enables better soft-tissue visualization and potentially enables applications such as adaptive radiotherapy.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Modelos Teóricos , Espalhamento de Radiação , Tomografia Computadorizada por Raios X , Humanos , Imagens de Fantasmas , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA