Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Phytoremediation ; 23(8): 809-817, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33307731

RESUMO

Leachate control and management is a major challenge faced during solid waste management as it may pollute surface and groundwaters. In the current research, constructed wetlands (CWs) vegetated with Typha angustifolia plant in combination with catalytic ozonation by ferrous (Fe)-coated zeolite A was studied for the treatment of leachate. The CWs treatment with 9 days detention reduced the chemical oxygen demand (COD) and biochemical oxygen demand (BOD) up to 75.81% and 69.84%, respectively. Moreover, total suspended solids (TSS), total dissolved solids (TDS), and total kjeldahl nitrogen (TKN) removal of 91.16%, 33.33%, and 25.22% were achieved, respectively. The Fe-coated zeolite A catalytic ozonation further reduced the COD up to 90.7%. Comparison of the processes showed the effective performance of the combined process (CW/O3/Fe-zeolite) with 97.76% COD reduction of leachate. It is, therefore, concluded that the studied combined process (CW/O3/Fe-zeolite A) was more efficient as compared with single ozonation and CW alone, hence it can be implied for the leachate treatment in real conditions.


Assuntos
Ozônio , Typhaceae , Poluentes Químicos da Água , Zeolitas , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Eliminação de Resíduos Líquidos , Áreas Alagadas
2.
Environ Sci Pollut Res Int ; 31(14): 22187-22197, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38403826

RESUMO

The study focused on the efficacious performance of bimetallic Fe-Zn loaded 3A zeolite in catalytic ozonation for the degradation of highly toxic veterinary antibiotic enrofloxacin in wastewater of the pharmaceutical industry. Batch experiments were conducted in a glass reactor containing a submerged pump holding catalyst pellets at suction. The submerged pump provided the agitation and recirculation across the solution for effective contact with the catalyst. The effect of ozone flow (0.8-1.55 mg/min) and catalyst dose (5-15 g/L) on the enrofloxacin degradation and removal of other conventional pollutants COD, BOD5, turbidity was studied. In batch experiments, 10 g of Fe-Zn 3A zeolite efficiently removed 92% of enrofloxacin, 77% of COD, 69% BOD5, and 61% turbidity in 1 L sample of pharmaceutical wastewater in 30 min at 1.1 mg/min of O3 flow. The catalytic performance of Fe-Zn 3A zeolite notably exceeded the removal efficiencies of 52%, 51%, 52%, and 59% for enrofloxacin, COD, BOD5, and turbidity, respectively, achieved with single ozonation process. Furthermore, an increase in the biodegradability of treated pharmaceutical industrial wastewater was observed and made biodegradable easily for subsequent treatment.


Assuntos
Ozônio , Drogas Veterinárias , Poluentes Químicos da Água , Purificação da Água , Zeolitas , Águas Residuárias , Enrofloxacina , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA