Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Biol ; 176(7): 929-39, 2007 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-17371836

RESUMO

The RNA-binding protein Sam68 is involved in apoptosis, but its cellular mRNA targets and its mechanism of action remain unknown. We demonstrate that Sam68 binds the mRNA for Bcl-x and affects its alternative splicing. Depletion of Sam68 by RNA interference caused accumulation of antiapoptotic Bcl-x(L), whereas its up-regulation increased the levels of proapoptotic Bcl-x(s). Tyrosine phosphorylation of Sam68 by Fyn inverted this effect and favored the Bcl-x(L) splice site selection. A point mutation in the RNA-binding domain of Sam68 influenced its splicing activity and subnuclear localization. Moreover, coexpression of ASF/SF2 with Sam68, or fusion with an RS domain, counteracted Sam68 splicing activity toward Bcl-x. Finally, Sam68 interacted with heterogenous nuclear RNP (hnRNP) A1, and depletion of hnRNP A1 or mutations that impair this interaction attenuated Bcl-x(s) splicing. Our results indicate that Sam68 plays a role in the regulation of Bcl-x alternative splicing and that tyrosine phosphorylation of Sam68 by Src-like kinases can switch its role from proapoptotic to antiapoptotic in live cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Processamento Alternativo/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Sítios de Ligação/genética , Linhagem Celular , Regulação para Baixo/fisiologia , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Mutação Puntual/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Fatores de Processamento de Serina-Arginina , Regulação para Cima/fisiologia
2.
FASEB J ; 20(10): 1680-2, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16790528

RESUMO

Two splice variants are derived from the BCL-x gene, proapoptotic Bcl-x(s) and antiapoptotic Bcl-x(L), via alternative 5' splice site selection. In previous studies, our laboratory identified an RNA cis-element within exon 2 of Bcl-x pre-mRNA that is a ceramide responsive termed CRCE 1. In this study, mass spectrometric analysis identified the splicing factor SAP155, as an RNA trans-acting factor binding to the purine-rich CRCE 1. The interaction of SAP155 with CRCE 1 was confirmed by the addition of an anti-SAP155 antibody (Ab) to EMSA decreasing the mobility of a protein:CRCE 1 complex (SuperShift). Furthermore, the down-regulation of SAP155 in A549 cells by RNA interference (RNAi) technology resulted in the loss of a 155 kDa protein complexed with CRCE 1. Moreover, this down-regulation of SAP155 induced an increase in the Bcl-x(s) with a concomitant decrease in the Bcl-x(L) splice variants and immunoreactive protein levels, thereby decreasing the Bcl-x(L)/Bcl-x(s) ratio. Specific down-regulation of SAP155 also inhibited the ability of exogenous ceramide treatment to further induce the activation of the Bcl-x(s) 5' splice site. Additionally, the specific down-regulation of SAP155 sensitized cells to undergo apoptosis in response to daunorubicin in a manner similar to ceramide. Therefore, we have identified SAP155 as an RNA trans-acting factor that binds to CRCE 1, functions to regulate the alternative 5' splice site selection of Bcl-x pre-mRNA, and is required for ceramide to induce the activation of the Bcl-x(s) 5' splice site. Furthermore, we have demonstrated that activation of the Bcl-x(s) 5' splice site can increase the effectiveness of chemotherapeutic drug treatment, thus establishing a role for the alternative splicing mechanism of Bcl-x in chemotherapeutic sensitivity.


Assuntos
Ceramidas/genética , Fosfoproteínas/metabolismo , Precursores de RNA , Sítios de Splice de RNA , RNA/genética , Elementos de Resposta , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Fatores de Transcrição/metabolismo , Proteína bcl-X/genética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/genética , Humanos , Espectrometria de Massas , Fosfoproteínas/genética , Ligação Proteica , Fatores de Processamento de RNA , Ribonucleoproteína Nuclear Pequena U2/genética , Fatores de Transcrição/genética
3.
Mol Cancer Res ; 9(7): 889-900, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21622622

RESUMO

Increasing evidence points to the functional importance of alternative splice variations in cancer pathophysiology with the alternative pre-mRNA processing of caspase 9 as one example. In this study, we delve into the underlying molecular mechanisms that regulate the alternative splicing of caspase 9. Specifically, the pre-mRNA sequence of caspase 9 was analyzed for RNA cis-elements known to interact with SRSF1, a required enhancer for caspase 9 RNA splicing. This analysis revealed 13 possible RNA cis-elements for interaction with SRSF1 with mutagenesis of these RNA cis-elements identifying a strong intronic splicing enhancer located in intron 6 (C9-I6/ISE). SRSF1 specifically interacted with this sequence, which was required for SRSF1 to act as a splicing enhancer of the inclusion of the 4 exon cassette. To further determine the biological importance of this mechanism, we employed RNA oligonucleotides to redirect caspase 9 pre-mRNA splicing in favor of caspase 9b expression, which resulted in an increase in the IC(50) of non-small cell lung cancer (NSCLC) cells to daunorubicin, cisplatinum, and paclitaxel. In contrast, downregulation of caspase 9b induced a decrease in the IC(50) of these chemotherapeutic drugs. Finally, these studies showed that caspase 9 RNA splicing was a major mechanism for the synergistic effects of combination therapy with daunorubicin and erlotinib. Overall, we have identified a novel intronic splicing enhancer that regulates caspase 9 RNA splicing and specifically interacts with SRSF1. Furthermore, we showed that the alternative splicing of caspase 9 is an important molecular mechanism with therapeutic relevance to NSCLCs.


Assuntos
Processamento Alternativo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Caspase 9/genética , Daunorrubicina/uso terapêutico , Pneumopatias/tratamento farmacológico , Proteínas Nucleares/metabolismo , Quinazolinas/uso terapêutico , Proteínas de Ligação a RNA/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Elementos Facilitadores Genéticos , Cloridrato de Erlotinib , Células HeLa , Humanos , Íntrons/genética , Pneumopatias/genética , Proteínas Nucleares/genética , Paclitaxel/uso terapêutico , Precursores de RNA/genética , Precursores de RNA/metabolismo , Sítios de Splice de RNA/genética , RNA Antissenso/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Fatores de Processamento de Serina-Arginina
4.
J Lipid Res ; 47(5): 892-7, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16505493

RESUMO

Two splice variants are derived from the caspase-9 gene, proapoptotic caspase-9a and antiapoptotic caspase-9b, by either the inclusion or exclusion of an exon 3, 4, 5, and 6 cassette. Previous studies from our laboratory have shown that the alternative splicing of caspase-9 and the phosphorylation status of SR proteins, a conserved family of splicing factors, are regulated by chemotherapy and ceramide via the action of protein phosphatase-1. In this study, a link between ceramide, SR proteins, and the alternative splicing of caspase-9 was established. The downregulation of SRp30a in A549 cells by RNA interference technology resulted in an increase in the caspase-9b splice variant, with a concomitant decrease in the caspase-9a splice variant, thereby significantly decreasing the caspase-9a/9b ratio from 1.67 +/- 0.11 to 0.56 +/- 0.08 (P < 0.005). The specific downregulation of SRp30a also inhibited the ability of exogenous ceramide treatment to induce the inclusion of the exon 3, 4, 5, and 6 cassette. Therefore, we have identified SRp30a as an RNA trans-acting factor that functions as a major regulator of caspase-9 pre-mRNA processing and is required for ceramide to mediate the alternative splicing of caspase-9.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Caspases/genética , Ceramidas/farmacologia , Proteínas Nucleares/fisiologia , Precursores de RNA/genética , Caspase 9 , Regulação para Baixo , Humanos , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA , Fatores de Processamento de Serina-Arginina
5.
J Lipid Res ; 46(12): 2706-16, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16170208

RESUMO

Previous studies in our laboratory have established ceramide kinase (CERK) as a critical mediator of eicosanoid synthesis. To date, CERK has not been well characterized in vitro. In this study, we investigated the substrate specificity of CERK using baculovirus-expressed human CERK (6 x His) and a newly designed assay based on mixed micelles of Triton X-100. The results indicate that the ability of CERK to recognize ceramide as a substrate is stereospecific. A minimum of a 12 carbon acyl chain was required for normal CERK activity, and the 4-5 trans double bond was important for substrate recognition. A significant discrimination by CERK was not observed between ceramides with long saturated and long unsaturated fatty acyl chains. Methylation of the primary hydroxyl group resulted in a loss of activity, confirming that CERK produces ceramide-1-phosphate versus ceramide-3-phosphate. In addition, methylation of the secondary hydroxyl group drastically decreased the phosphorylation by CERK. These results also indicated that the free hydrogen of the secondary amide group is critical for substrate recognition. Lastly, the sphingoid chain was also required for substrate recognition by CERK. Together, these results indicate a very high specificity for substrate recognition by CERK, explaining the use of ceramide and not sphingosine or diacylglycerol as substrates.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Amidas/química , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Células HeLa , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Especificidade por Substrato
6.
J Biol Chem ; 279(16): 15799-804, 2004 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-14734550

RESUMO

Two splice variants derived from the BCL-x gene, proapoptotic Bcl-x(s) and anti-apoptotic Bcl-x(L), are produced via alternative 5' splice site selection within exon 2 of Bcl-x pre-mRNA. In previous studies, our laboratory demonstrated that ceramide regulated this 5' splice site selection, inducing the production of Bcl-x(s) mRNA with a concomitant decrease in Bcl-x(L) correlating with sensitization to chemotherapy (Chalfant, C. E., Rathman, K., Pinkerman, R. L., Wood, R. E., Obeid, L. M., Ogretmen, B., and Hannun, Y. A. (2002) J. Biol. Chem. 277, 12587-12595). We have now identified several possible RNA cis-elements within exon 2 of Bcl-x pre-mRNA by sequence analysis. To study the possible roles of these RNA cis-elements in regulating the alternative 5' splice site selection of Bcl-x pre-mRNA, we developed a BCL-x minigene construct which conferred the same ratio of Bcl-x(L)/Bcl-x(s) mRNA as the endogenous Bcl-x and was responsive to ceramide treatment. Mutagenesis of either a purine-rich splicing enhancer or a pyrimidine tract element within exon 2 induced a change in the ratio of Bcl-x(L)/Bcl-x(s) mRNA from 7 to 1 and 0.23, thereby diminishing the selection of the Bcl-x(L) 5' splice site with a concomitant increase in Bcl-x(s) 5' splice site selection. Furthermore, mutagenesis of these cis-elements abolished the ability of ceramide to affect the 5' splice site selection. In vitro binding assays coupled with competitor studies demonstrated specific binding of RNA trans-activating proteins to these regions. SDS-PAGE analysis of cross-linked RNA trans-activating factors with these RNA cis-elements revealed the binding of 215-, 120-, and 30-kDa proteins to the purine-rich element and 120- and 76-kDa proteins to the pyrimidine tract element. In addition, exogenous treatment of A549 cells with ceramide increased the formation of protein complexes with these RNA cis-elements. Therefore, we have identified two ceramide-responsive RNA cis-elements within exon 2 of Bcl-x pre-mRNA, and this is the first report of an RNA cis-element responsive to a bioactive lipid.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-2/genética , Precursores de RNA/genética , Processamento Alternativo/efeitos dos fármacos , Sítios de Ligação/genética , Linhagem Celular Tumoral , Ceramidas/farmacologia , Humanos , Mutagênese Sítio-Dirigida , Sítios de Splice de RNA/genética , Ativação Transcricional , Proteína bcl-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA