Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37186547

RESUMO

During the emergence of new host-microbe symbioses, microbial fitness results from the ability to complete the different steps of symbiotic life cycles, where each step imposes specific selective pressures. However, the relative contribution of these different selective pressures to the adaptive trajectories of microbial symbionts is still poorly known. Here, we characterized the dynamics of phenotypic adaptation to a simplified symbiotic life cycle during the experimental evolution of a plant pathogenic bacterium into a legume symbiont. We observed that fast adaptation was predominantly explained by improved competitiveness for host entry, which outweighed adaptation to within-host proliferation. Whole-population sequencing of bacteria at regular time intervals along this evolution experiment revealed the continuous accumulation of new mutations (fuelled by a transient hypermutagenesis phase occurring at each cycle before host entry, a phenomenon described in previous work) and sequential sweeps of cohorts of mutations with similar temporal trajectories. The identification of adaptive mutations within the fixed mutational cohorts showed that several adaptive mutations can co-occur in the same cohort. Moreover, all adaptive mutations improved competitiveness for host entry, while only a subset of those also improved within-host proliferation. Computer simulations predict that this effect emerges from the presence of a strong selective bottleneck at host entry occurring before within-host proliferation and just after the hypermutagenesis phase in the rhizosphere. Together, these results show how selective bottlenecks can alter the relative influence of selective pressures acting during bacterial adaptation to multistep infection processes.


Assuntos
Fabaceae , Fabaceae/genética , Bactérias/genética , Adaptação Fisiológica , Mutação , Aclimatação , Simbiose/genética
2.
Environ Microbiol ; 24(11): 5509-5523, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35920038

RESUMO

Although rhizobia that establish a nitrogen-fixing symbiosis with legumes are also known to promote growth in non-legumes, studies on rhizobial associations with wheat roots are scarce. We searched for Rhizobium leguminosarum symbiovar viciae (Rlv) strains naturally competent to endophytically colonize wheat roots. We isolated 20 strains from surface-sterilized wheat roots and found a low diversity of Rlv compared to that observed in the Rlv species complex. We tested the ability of a subset of these Rlv for wheat root colonization when co-inoculated with other Rlv. Only a few strains, including those isolated from wheat roots, and one strain isolated from pea nodules, were efficient in colonizing roots in co-inoculation conditions, while all the strains tested in single strain inoculation conditions were found to colonize the surface and interior of roots. Furthermore, Rlv strains isolated from wheat roots were able to stimulate root development and early arbuscular mycorrhizal fungi colonization. These responses were strain and host genotype dependent. Our results suggest that wheat can be an alternative host for Rlv; nevertheless, there is a strong competition between Rlv strains for wheat root colonization. In addition, we showed that Rlv are endophytic wheat root bacteria with potential ability to modify wheat development.


Assuntos
Rhizobium leguminosarum , Rhizobium , Rhizobium leguminosarum/genética , Endófitos/genética , Triticum , Filogenia , Simbiose/genética , Bactérias/genética , Nódulos Radiculares de Plantas/microbiologia
3.
Mol Plant Microbe Interact ; 32(12): 1635-1648, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31617792

RESUMO

The ß-rhizobium Cupriavidus taiwanensis is a nitrogen-fixing symbiont of Mimosa pudica. Nod factors produced by this species were previously found to be pentameric chitin-oligomers carrying common C18:1 or C16:0 fatty acyl chains, N-methylated and C-6 carbamoylated on the nonreducing terminal N-acetylglucosamine and sulfated on the reducing terminal residue. Here, we report that, in addition, C. taiwanensis LMG19424 produces molecules where the reducing sugar is open and oxidized. We identified a novel nodulation gene located on the symbiotic plasmid pRalta, called noeM, which is involved in this atypical Nod factor structure. noeM encodes a transmembrane protein bearing a fatty acid hydroxylase domain. This gene is expressed during symbiosis with M. pudica and requires NodD and luteolin for optimal expression. The closest noeM homologs formed a separate phylogenetic clade containing rhizobial genes only, which are located on symbiosis plasmids downstream from a nod box. Corresponding proteins, referred to as NoeM, may have specialized in symbiosis via the connection to the nodulation pathway and the spread in rhizobia. noeM was mostly found in isolates of the Mimoseae tribe, and specifically detected in all tested strains able to nodulate M. pudica. A noeM deletion mutant of C. taiwanensis was affected for the nodulation of M. pudica, confirming the role of noeM in the symbiosis with this legume.


Assuntos
Cupriavidus , Mimosa , Rhizobium , Cupriavidus/classificação , Cupriavidus/genética , Genes Bacterianos/genética , Mimosa/microbiologia , Filogenia , Plasmídeos/genética , Simbiose/genética
4.
New Phytol ; 223(3): 1505-1515, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31059123

RESUMO

A complex network of pathways coordinates nodulation and epidermal root hair infection in the symbiotic interaction between rhizobia and legume plants. Whereas nodule formation was known to be autoregulated, it was so far unclear whether a similar control is exerted on the infection process. We assessed the capacity of Medicago plants nodulated by Sinorhizobium meliloti to modulate root susceptibility to secondary bacterial infection or to purified Nod factors in split-root and volatile assays using bacterial and plant mutant combinations. Ethylene implication in this process emerged from gas production measurements, use of a chemical inhibitor of ethylene biosynthesis and of a Medicago mutant affected in ethylene signal transduction. We identified a feedback mechanism that we named AOI (for Autoregulation Of Infection) by which endosymbiotic bacteria control secondary infection thread formation by their rhizospheric peers. AOI involves activation of a cyclic adenosine 3',5'-monophosphate (cAMP) cascade in endosymbiotic bacteria, which decreases both root infectiveness and root susceptibility to bacterial Nod factors. These latter two effects are mediated by ethylene. AOI is a novel component of the complex regulatory network controlling the interaction between Sinorhizobium meliloti and its host plants that emphasizes the implication of endosymbiotic bacteria in fine-tuning the interaction.


Assuntos
Etilenos/metabolismo , Medicago truncatula/microbiologia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Sinorhizobium meliloti/fisiologia , Simbiose , Proteínas de Bactérias/metabolismo , Modelos Biológicos , Epiderme Vegetal/microbiologia , Nodulação , Compostos Orgânicos Voláteis/metabolismo
5.
Proc Natl Acad Sci U S A ; 113(48): 13875-13880, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27849579

RESUMO

Horizontal gene transfer (HGT) of genomic islands is a driving force of bacterial evolution. Many pathogens and symbionts use this mechanism to spread mobile genetic elements that carry genes important for interaction with their eukaryotic hosts. However, the role of the host in this process remains unclear. Here, we show that plant compounds inducing the nodulation process in the rhizobium-legume mutualistic symbiosis also enhance the transfer of symbiosis islands. We demonstrate that the symbiosis island of the Sesbania rostrata symbiont, Azorhizobium caulinodans, is an 87.6-kb integrative and conjugative element (ICEAc) that is able to excise, form a circular DNA, and conjugatively transfer to a specific site of gly-tRNA gene of other rhizobial genera, expanding their host range. The HGT frequency was significantly increased in the rhizosphere. An ICEAc-located LysR-family transcriptional regulatory protein AhaR triggered the HGT process in response to plant flavonoids that induce the expression of nodulation genes through another LysR-type protein, NodD. Our study suggests that rhizobia may sense rhizosphere environments and transfer their symbiosis gene contents to other genera of rhizobia, thereby broadening rhizobial host-range specificity.


Assuntos
Azorhizobium caulinodans/genética , Transferência Genética Horizontal/genética , Nodulação/genética , Simbiose/genética , Azorhizobium caulinodans/metabolismo , Fabaceae/genética , Fabaceae/microbiologia , Ilhas Genômicas/genética , Fixação de Nitrogênio/genética
6.
J Bacteriol ; 200(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29531182

RESUMO

An ongoing signal exchange fine-tunes the symbiotic interactions between rhizobia and legumes, ensuring the establishment and maintenance of mutualism. In a recently identified regulatory loop, endosymbiotic Sinorhizobium meliloti exerts negative feedback on root infection in response to unknown plant cues. Upon signal perception, three bacterial adenylate cyclases (ACs) of the inner membrane, namely, CyaD1, CyaD2, and CyaK, synthesize the second messenger cAMP, which, together with the cAMP-dependent Clr transcriptional activator, activates the expression of genes involved in root infection control. The pathway that links signal perception at the surface of the cell to cytoplasmic cAMP production by ACs was thus far unknown. Here we first show that CyaK is the cognate AC for the plant signal, called signal 1, that was observed previously in mature nodule and shoot extracts. We also show that inactivation of the gene immediately upstream of cyaK, nsrA (smb20775), which encodes a ß-barrel protein of the outer membrane, abolished signal 1 perception ex planta, whereas nsrA overexpression increased signal 1 responsiveness. Inactivation of the nsrA gene abolished all Clr-dependent gene expression in nodules and led to a marked hyperinfection phenotype on plants, similar to that of a cyaD1 cyaD2 cyaK triple mutant. We suggest that the NsrA protein acts as the (co)receptor for two signal molecules, signal 1 and a hypothetical signal 1', in mature and young nodules that cooperate in controlling secondary infection in S. meliloti-Medicago symbiosis. The predicted topology and domain composition of the NsrA protein hint at a mechanism of transmembrane signaling.IMPORTANCE Symbiotic interactions, especially mutualistic ones, rely on a continuous signal exchange between the symbionts. Here we report advances regarding a recently discovered signal transduction pathway that fine-tunes the symbiotic interaction between S. meliloti and its Medicago host plant. We have identified an outer membrane protein of S. meliloti, called NsrA, that transduces Medicago plant signals to adenylate cyclases in the inner membrane, thereby triggering a cAMP signaling cascade that controls infection. Besides their relevance for the rhizobium-legume symbiosis, these findings shed light on the mechanisms of signal perception and transduction by adenylate cyclases and transmembrane signaling in bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Medicago truncatula/microbiologia , Transdução de Sinais , Sinorhizobium meliloti/fisiologia , Simbiose , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Proteínas de Bactérias/genética , AMP Cíclico/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Biológicos , Mutação , Fenótipo , Sinorhizobium meliloti/genética
7.
Mol Biol Evol ; 34(10): 2503-2521, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28535261

RESUMO

Ecological transitions between different lifestyles, such as pathogenicity, mutualism and saprophytism, have been very frequent in the course of microbial evolution, and often driven by horizontal gene transfer. Yet, how genomes achieve the ecological transition initiated by the transfer of complex biological traits remains poorly known. Here, we used experimental evolution, genomics, transcriptomics and high-resolution phenotyping to analyze the evolution of the plant pathogen Ralstonia solanacearum into legume symbionts, following the transfer of a natural plasmid encoding the essential mutualistic genes. We show that a regulatory pathway of the recipient R. solanacearum genome involved in extracellular infection of natural hosts was reused to improve intracellular symbiosis with the Mimosa pudica legume. Optimization of intracellular infection capacity was gained through mutations affecting two components of a new regulatory pathway, the transcriptional regulator efpR and a region upstream from the RSc0965-0967 genes of unknown functions. Adaptive mutations caused the downregulation of efpR and the over-expression of a downstream regulatory module, the three unknown genes RSc3146-3148, two of which encoding proteins likely associated to the membrane. This over-expression led to important metabolic and transcriptomic changes and a drastic qualitative and quantitative improvement of nodule intracellular infection. In addition, these adaptive mutations decreased the virulence of the original pathogen. The complete efpR/RSc3146-3148 pathway could only be identified in the genomes of the pathogenic R. solanacearum species complex. Our findings illustrate how the rewiring of a genetic network regulating virulence allows a radically different type of symbiotic interaction and contributes to ecological transitions and trade-offs.


Assuntos
Mimosa/genética , Ralstonia solanacearum/genética , Evolução Molecular Direcionada , Fabaceae/genética , Redes Reguladoras de Genes/genética , Transferência Genética Horizontal/genética , Genes Bacterianos/genética , Genoma Bacteriano/genética , Mutação , Plasmídeos/genética , Ralstonia solanacearum/patogenicidade , Simbiose/genética , Virulência/genética
8.
Mol Ecol ; 26(7): 1818-1831, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27770459

RESUMO

Experimental evolution is a powerful approach to study the process of adaptation to new environments, including the colonization of eukaryotic hosts. Facultative endosymbionts, including pathogens and mutualists, face changing and spatially structured environments during the symbiotic process, which impose diverse selection pressures. Here, we provide evidence that different selection regimes, involving different times spent in the plant environment, can result in either intra- or extracellular symbiotic adaptations. In previous work, we introduced the symbiotic plasmid of Cupriavidus taiwanensis, the rhizobial symbiont of Mimosa pudica, into the phytopathogen Ralstonia solanacearum and selected three variants able to form root nodules on M. pudica, two (CBM212 and CBM349) being able to rudimentarily infect nodule cells and the third one (CBM356) only capable of extracellular infection of nodules. Each nodulating ancestor was further challenged to evolve using serial ex planta-in planta cycles of either 21 (three short-cycle lineages) or 42 days (three long-cycle lineages). In this study, we compared the phenotype of the 18 final evolved clones. Evolution through short and long cycles resulted in similar adaptive paths on lineages deriving from the two intracellularly infectious ancestors, CBM212 and CBM349. In contrast, only short cycles allowed a stable acquisition of intracellular infection in lineages deriving from the extracellularly infecting ancestor, CBM356. Long cycles, instead, favoured improvement of extracellular infection. Our work highlights the importance of the selection regime in shaping desired traits during host-mediated selection experiments.


Assuntos
Evolução Biológica , Cupriavidus/genética , Mimosa/microbiologia , Ralstonia solanacearum/genética , Simbiose/genética , Adaptação Fisiológica/genética , Nodulação , Raízes de Plantas/microbiologia , Plasmídeos/genética , Ralstonia solanacearum/fisiologia
9.
PLoS Biol ; 12(9): e1001942, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25181317

RESUMO

Horizontal gene transfer (HGT) is an important mode of adaptation and diversification of prokaryotes and eukaryotes and a major event underlying the emergence of bacterial pathogens and mutualists. Yet it remains unclear how complex phenotypic traits such as the ability to fix nitrogen with legumes have successfully spread over large phylogenetic distances. Here we show, using experimental evolution coupled with whole genome sequencing, that co-transfer of imuABC error-prone DNA polymerase genes with key symbiotic genes accelerates the evolution of a soil bacterium into a legume symbiont. Following introduction of the symbiotic plasmid of Cupriavidus taiwanensis, the Mimosa symbiont, into pathogenic Ralstonia solanacearum we challenged transconjugants to become Mimosa symbionts through serial plant-bacteria co-cultures. We demonstrate that a mutagenesis imuABC cassette encoded on the C. taiwanensis symbiotic plasmid triggered a transient hypermutability stage in R. solanacearum transconjugants that occurred before the cells entered the plant. The generated burst in genetic diversity accelerated symbiotic adaptation of the recipient genome under plant selection pressure, presumably by improving the exploration of the fitness landscape. Finally, we show that plasmid imuABC cassettes are over-represented in rhizobial lineages harboring symbiotic plasmids. Our findings shed light on a mechanism that may have facilitated the dissemination of symbiotic competency among α- and ß-proteobacteria in natura and provide evidence for the positive role of environment-induced mutagenesis in the acquisition of a complex lifestyle trait. We speculate that co-transfer of complex phenotypic traits with mutagenesis determinants might frequently enhance the ecological success of HGT.


Assuntos
Cupriavidus/genética , Transferência Genética Horizontal , Genes Bacterianos , Genoma Bacteriano , Plasmídeos/metabolismo , Ralstonia solanacearum/genética , Transportadores de Cassetes de Ligação de ATP/genética , Adaptação Fisiológica/genética , Evolução Biológica , Fabaceae/microbiologia , Fabaceae/fisiologia , Mimosa/microbiologia , Mimosa/fisiologia , Mutação , Simbiose/genética
10.
Proc Natl Acad Sci U S A ; 109(17): 6751-6, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22493242

RESUMO

Legumes and soil bacteria called rhizobia have coevolved a facultative nitrogen-fixing symbiosis. Establishment of the symbiosis requires bacterial entry via root hair infection threads and, in parallel, organogenesis of nodules that subsequently are invaded by bacteria. Tight control of nodulation and infection is required to maintain the mutualistic character of the interaction. Available evidence supports a passive bacterial role in nodulation and infection after the microsymbiont has triggered the symbiotic plant developmental program. Here we identify in Sinorhizobium meliloti, the Medicago symbiont, a cAMP-signaling regulatory cascade consisting of three receptor-like adenylate cyclases, a Crp-like regulator, and a target gene of unknown function. The cascade is activated specifically by a plant signal during nodule organogenesis. Cascade inactivation results in a hyperinfection phenotype consisting of abortive epidermal infection events uncoupled from nodulation. These findings show that, in response to a plant signal, rhizobia play an active role in the control of infection. We suggest that rhizobia may modulate the plant's susceptibility to infection. This regulatory loop likely aims at optimizing legume infection.


Assuntos
Adenilil Ciclases/metabolismo , Medicago/parasitologia , Plantas/metabolismo , Sinorhizobium meliloti/patogenicidade , AMP Cíclico/metabolismo , Transdução de Sinais , Simbiose
11.
Mol Plant Microbe Interact ; 27(9): 956-64, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25105803

RESUMO

Nitrogen-fixing symbionts of legumes have appeared after the emergence of legumes on earth, approximately 70 to 130 million years ago. Since then, symbiotic proficiency has spread to distant genera of α- and ß-proteobacteria, via horizontal transfer of essential symbiotic genes and subsequent recipient genome remodeling under plant selection pressure. To tentatively replay rhizobium evolution in laboratory conditions, we previously transferred the symbiotic plasmid of the Mimosa symbiont Cupriavidus taiwanensis in the plant pathogen Ralstonia solanacearum, and selected spontaneous nodulating variants of the chimeric Ralstonia sp. using Mimosa pudica as a trap. Here, we pursued the evolution experiment by submitting two of the rhizobial drafts to serial ex planta-in planta (M. pudica) passages that may mimic alternating of saprophytic and symbiotic lives of rhizobia. Phenotyping 16 cycle-evolved clones showed strong and parallel evolution of several symbiotic traits (i.e., nodulation competitiveness, intracellular infection, and bacteroid persistence). Simultaneously, plant defense reactions decreased within nodules, suggesting that the expression of symbiotic competence requires the capacity to limit plant immunity. Nitrogen fixation was not acquired in the frame of this evolutionarily short experiment, likely due to the still poor persistence of final clones within nodules compared with the reference rhizobium C. taiwanensis. Our results highlight the potential of experimental evolution in improving symbiotic proficiency and for the elucidation of relationship between symbiotic capacities and elicitation of immune responses.


Assuntos
Mimosa/microbiologia , Imunidade Vegetal , Nodulação , Ralstonia solanacearum/genética , Simbiose/genética , Cupriavidus/genética , Evolução Molecular Direcionada , Leghemoglobina/análise , Leghemoglobina/metabolismo , Mimosa/citologia , Mimosa/imunologia , Fixação de Nitrogênio , Fenótipo , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Plasmídeos/genética , Ralstonia solanacearum/fisiologia , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo
12.
BMC Microbiol ; 13: 268, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24279347

RESUMO

BACKGROUND: 3', 5'cAMP signaling in Sinorhizobium meliloti was recently shown to contribute to the autoregulation of legume infection. In planta, three adenylate cyclases CyaD1, CyaD2 and CyaK, synthesizing 3', 5'cAMP, together with the Crp-like transcriptional regulator Clr and smc02178, a gene of unknown function, are involved in controlling plant infection. RESULTS: Here we report on the characterization of a gene (smc02179, spdA) at the cyaD1 locus that we predicted to encode a class III cytoplasmic phosphodiesterase.First, we have shown that spdA had a similar pattern of expression as smc02178 in planta but did not require clr nor 3', 5'cAMP for expression.Second, biochemical characterization of the purified SpdA protein showed that, contrary to expectation, it had no detectable activity against 3', 5'cAMP and, instead, high activity against the positional isomers 2', 3'cAMP and 2', 3'cGMP.Third, we provide direct experimental evidence that the purified Clr protein was able to bind both 2', 3'cAMP and 3', 5'cAMP in vitro at high concentration. We further showed that Clr is a 3', 5'cAMP-dependent DNA-binding protein and identified a DNA-binding motif to which Clr binds. In contrast, 2', 3'cAMP was unable to promote Clr specific-binding to DNA and activate smc02178 target gene expression ex planta.Fourth, we have shown a negative impact of exogenous 2', 3'cAMP on 3', 5'cAMP-mediated signaling in vivo. A spdA null mutant was also partially affected in 3', 5'cAMP signaling. CONCLUSIONS: SpdA is a nodule-expressed 2', 3' specific phosphodiesterase whose biological function remains elusive. Circumstantial evidence suggests that SpdA may contribute insulating 3', 5'cAMP-based signaling from 2', 3' cyclic nucleotides of metabolic origin.


Assuntos
2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Nucleotídeos de Adenina/metabolismo , Sinorhizobium meliloti/enzimologia , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/genética , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/isolamento & purificação , Perfilação da Expressão Gênica , Ligação Proteica , Sinorhizobium meliloti/genética
13.
PLoS Biol ; 8(1): e1000280, 2010 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-20084095

RESUMO

Rhizobia are phylogenetically disparate alpha- and beta-proteobacteria that have achieved the environmentally essential function of fixing atmospheric nitrogen in symbiosis with legumes. Ample evidence indicates that horizontal transfer of symbiotic plasmids/islands has played a crucial role in rhizobia evolution. However, adaptive mechanisms that allow the recipient genomes to express symbiotic traits are unknown. Here, we report on the experimental evolution of a pathogenic Ralstonia solanacearum chimera carrying the symbiotic plasmid of the rhizobium Cupriavidus taiwanensis into Mimosa nodulating and infecting symbionts. Two types of adaptive mutations in the hrpG-controlled virulence pathway of R. solanacearum were identified that are crucial for the transition from pathogenicity towards mutualism. Inactivation of the hrcV structural gene of the type III secretion system allowed nodulation and early infection to take place, whereas inactivation of the master virulence regulator hrpG allowed intracellular infection of nodule cells. Our findings predict that natural selection of adaptive changes in the legume environment following horizontal transfer has been a major driving force in rhizobia evolution and diversification and show the potential of experimental evolution to decipher the mechanisms leading to symbiosis.


Assuntos
Fabaceae/microbiologia , Rhizobium/genética , Simbiose/genética , Adaptação Biológica , Quimera , Evolução Molecular Direcionada , Transferência Genética Horizontal , Fixação de Nitrogênio , Nodulação/genética , Polimorfismo de Nucleotídeo Único , Rhizobium/fisiologia
14.
Nat Plants ; 9(7): 1067-1080, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37322127

RESUMO

Symbiotic interactions such as the nitrogen-fixing root nodule symbiosis (RNS) have structured ecosystems during the evolution of life. Here we aimed at reconstructing ancestral and intermediate steps that shaped RNS observed in extant flowering plants. We compared the symbiotic transcriptomic responses of nine host plants, including the mimosoid legume Mimosa pudica for which we assembled a chromosome-level genome. We reconstructed the ancestral RNS transcriptome composed of most known symbiotic genes together with hundreds of novel candidates. Cross-referencing with transcriptomic data in response to experimentally evolved bacterial strains with gradual symbiotic proficiencies, we found the response to bacterial signals, nodule infection, nodule organogenesis and nitrogen fixation to be ancestral. By contrast, the release of symbiosomes was associated with recently evolved genes encoding small proteins in each lineage. We demonstrate that the symbiotic response was mostly in place in the most recent common ancestor of the RNS-forming species more than 90 million years ago.


Assuntos
Fabaceae , Simbiose , Simbiose/fisiologia , Ecossistema , Fixação de Nitrogênio/genética , Bactérias
15.
Appl Environ Microbiol ; 78(20): 7476-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22865066

RESUMO

Cupriavidus taiwanensis forms proficient symbioses with a few Mimosa species. Inactivation of a type III protein secretion system (T3SS) had no effect on Mimosa pudica but allowed C. taiwanensis to establish chronic infections and fix nitrogen in Leucaena leucocephala. Unlike what was observed for other rhizobia, glutamate rather than plant flavonoids mediated transcriptional activation of this atypical T3SS.


Assuntos
Sistemas de Secreção Bacterianos , Cupriavidus/fisiologia , Fabaceae/microbiologia , Simbiose , Cupriavidus/metabolismo , Técnicas de Inativação de Genes , Glutamatos/metabolismo , Proteínas , Transcrição Gênica , Ativação Transcricional
16.
Appl Environ Microbiol ; 77(6): 2161-4, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21257807

RESUMO

The beta-rhizobium Cupriavidus taiwanensis forms indeterminate nodules on Mimosa pudica. C. taiwanensis bacteroids resemble free-living bacteria in terms of genomic DNA content, cell size, membrane permeability, and viability, in contrast to bacteroids in indeterminate nodules of the galegoid clade. Bacteroid differentiation is thus unrelated to nodule ontogeny.


Assuntos
Cupriavidus/citologia , Mimosa/microbiologia , Nódulos Radiculares de Plantas/microbiologia
17.
Genes (Basel) ; 11(3)2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210028

RESUMO

Rhizobia, the nitrogen-fixing symbionts of legumes, are polyphyletic bacteria distributed in many alpha- and beta-proteobacterial genera. They likely emerged and diversified through independent horizontal transfers of key symbiotic genes. To replay the evolution of a new rhizobium genus under laboratory conditions, the symbiotic plasmid of Cupriavidus taiwanensis was introduced in the plant pathogen Ralstonia solanacearum, and the generated proto-rhizobium was submitted to repeated inoculations to the C. taiwanensis host, Mimosa pudica L.. This experiment validated a two-step evolutionary scenario of key symbiotic gene acquisition followed by genome remodeling under plant selection. Nodulation and nodule cell infection were obtained and optimized mainly via the rewiring of regulatory circuits of the recipient bacterium. Symbiotic adaptation was shown to be accelerated by the activity of a mutagenesis cassette conserved in most rhizobia. Investigating mutated genes led us to identify new components of R. solanacearum virulence and C. taiwanensis symbiosis. Nitrogen fixation was not acquired in our short experiment. However, we showed that post-infection sanctions allowed the increase in frequency of nitrogen-fixing variants among a non-fixing population in the M. pudica-C. taiwanensis system and likely allowed the spread of this trait in natura. Experimental evolution thus provided new insights into rhizobium biology and evolution.


Assuntos
Evolução Molecular , Fabaceae/microbiologia , Rhizobium/genética , Simbiose , Fabaceae/genética , Rhizobium/patogenicidade , Seleção Genética
18.
mBio ; 11(1)2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992622

RESUMO

Over millions of years, changes have occurred in regulatory circuitries in response to genome reorganization and/or persistent changes in environmental conditions. How bacteria optimize regulatory circuitries is crucial to understand bacterial adaptation. Here, we analyzed the experimental evolution of the plant pathogen Ralstonia solanacearum into legume symbionts after the transfer of a natural plasmid encoding the essential mutualistic genes. We showed that the Phc quorum sensing system required for the virulence of the ancestral bacterium was reconfigured to improve intracellular infection of root nodules induced by evolved Ralstonia A single mutation in either the PhcB autoinducer synthase or the PhcQ regulator of the sensory cascade tuned the kinetics of activation of the central regulator PhcA in response to cell density so that the minimal stimulatory concentration of autoinducers needed for a given response was increased. Yet, a change in the expression of a PhcA target gene was observed in infection threads progressing in root hairs, suggesting early programming for the late accommodation of bacteria in nodule cells. Moreover, this delayed switch to the quorum sensing mode decreased the pathogenicity of the ancestral strain, illustrating the functional plasticity of regulatory systems and showing how a small modulation in signal response can produce drastic changes in bacterial lifestyle.IMPORTANCE Rhizobia are soil bacteria from unrelated genera able to form a mutualistic relationship with legumes. Bacteria induce the formation of root nodules, invade nodule cells, and fix nitrogen to the benefit of the plant. Rhizobial lineages emerged from the horizontal transfer of essential symbiotic genes followed by genome remodeling to activate and/or optimize the acquired symbiotic potential. This evolutionary scenario was replayed in a laboratory evolution experiment in which the plant pathogen Ralstonia solanacearum successively evolved the capacities to nodulate Mimosa pudica and poorly invade, then massively invade, nodule cells. In some lines, the improvement of intracellular infection was achieved by mutations modulating a quorum sensing regulatory system of the ancestral strain. This modulation that affects the activity of a central regulator during the earliest stages of symbiosis has a huge impact on late stages of symbiosis. This work showed that regulatory rewiring is the main driver of this pathogeny-symbiosis transition.


Assuntos
Adaptação Biológica , Fabaceae/microbiologia , Interações Hospedeiro-Patógeno , Percepção de Quorum , Nódulos Radiculares de Plantas/microbiologia , Simbiose , Adaptação Biológica/genética , Bactérias , Evolução Biológica , Fabaceae/genética , Interações Hospedeiro-Patógeno/genética , Mutação , Rhizobium , Nódulos Radiculares de Plantas/genética
19.
Trends Microbiol ; 27(7): 623-634, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30910518

RESUMO

The experimental evolution (EE) of microbes has allowed evolutionary biologists to examine adaptive processes in real time, generating novel insights into fundamental laws of evolution. Less appreciated is the potential of this approach to advance our understanding of microbial cells and molecular processes as a complement to traditional molecular genetics. The tracking of mutations underlying phenotypic changes offers the opportunity for detailed molecular analyses of novel phenotypes. This provides a breadth of information on diverse biological systems and may retrace key past events of natural history. Here, we highlight how the field has advanced our understanding of gene regulation, antibiotic resistance, and host-microbiome interactions to exemplify how EE can be used to provide new light on microbial systems.


Assuntos
Evolução Biológica , Interações Hospedeiro-Patógeno , Técnicas Microbiológicas , Resistência Microbiana a Medicamentos , Microbiologia Ambiental , Regulação da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Microbiota
20.
Curr Opin Plant Biol ; 44: 7-15, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29289792

RESUMO

By evolving the dual capacity of intracellular survival and symbiotic nitrogen fixation in legumes, rhizobia have achieved an ecological and evolutionary success that has reshaped our biosphere. Despite complex challenges, including a dual lifestyle of intracellular infection separated by a free-living phase in soil, rhizobial symbiosis has spread horizontally to hundreds of bacterial species and geographically throughout the globe. This symbiosis has also persisted and been reshaped through millions of years of history. Here, we summarize recent advances in our understanding of the molecular mechanisms, ecological settings, and evolutionary pathways that are collectively responsible for this symbiotic success story. We offer predictions of how this symbiosis can evolve under new influences and for the benefit of a burgeoning human population.


Assuntos
Fixação de Nitrogênio/fisiologia , Raízes de Plantas/microbiologia , Rhizobium/fisiologia , Simbiose/fisiologia , Fixação de Nitrogênio/genética , Nódulos Radiculares de Plantas/imunologia , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA