Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hepatology ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37916976

RESUMO

BACKGROUND AND AIMS: HCC is the most common primary liver tumor, with an increasing incidence worldwide. HCC is a heterogeneous malignancy and usually develops in a chronically injured liver. The NF-κB signaling network consists of a canonical and a noncanonical branch. Activation of canonical NF-κB in HCC is documented. However, a functional and clinically relevant role of noncanonical NF-κB and its downstream effectors is not established. APPROACH AND RESULTS: Four human HCC cohorts (total n = 1462) and 4 mouse HCC models were assessed for expression and localization of NF-κB signaling components and activating ligands. In vitro , NF-κB signaling, proliferation, and cell death were measured, proving a pro-proliferative role of v-rel avian reticuloendotheliosis viral oncogene homolog B (RELB) activated by means of NF-κB-inducing kinase. In vivo , lymphotoxin beta was identified as the predominant inducer of RELB activation. Importantly, hepatocyte-specific RELB knockout in a murine HCC model led to a lower incidence compared to controls and lower maximal tumor diameters. In silico , RELB activity and RELB-directed transcriptomics were validated on the The Cancer Genome Atlas HCC cohort using inferred protein activity and Gene Set Enrichment Analysis. In RELB-active HCC, pathways mediating proliferation were significantly activated. In contrast to v-rel avian reticuloendotheliosis viral oncogene homolog A, nuclear enrichment of noncanonical RELB expression identified patients with a poor prognosis in an etiology-independent manner. Moreover, RELB activation was associated with malignant features metastasis and recurrence. CONCLUSIONS: This study demonstrates a prognostically relevant, etiology-independent, and cross-species consistent activation of a lymphotoxin beta/LTßR/RELB axis in hepatocarcinogenesis. These observations may harbor broad implications for HCC, including possible clinical exploitation.

2.
Nucleic Acids Res ; 47(13): e75, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30982889

RESUMO

The rapid development of CRISPR-Cas technologies brought a personalized and targeted treatment of genetic disorders into closer reach. To render CRISPR-based therapies precise and safe, strategies to confine the activity of Cas(9) to selected cells and tissues are highly desired. Here, we developed a cell type-specific Cas-ON switch based on miRNA-regulated expression of anti-CRISPR (Acr) proteins. We inserted target sites for miR-122 or miR-1, which are abundant specifically in liver and cardiac muscle cells, respectively, into the 3'UTR of Acr transgenes. Co-expressing these with Cas9 and sgRNAs resulted in Acr knockdown and released Cas9 activity solely in hepatocytes or cardiomyocytes, while Cas9 was efficiently inhibited in off-target cells. We demonstrate control of genome editing and gene activation using a miR-dependent AcrIIA4 in combination with different Streptococcus pyogenes (Spy)Cas9 variants (full-length Cas9, split-Cas9, dCas9-VP64). Finally, to showcase its modularity, we adapted our Cas-ON system to the smaller and more target-specific Neisseria meningitidis (Nme)Cas9 orthologue and its cognate inhibitors AcrIIC1 and AcrIIC3. Our Cas-ON switch should facilitate cell-specific activity of any CRISPR-Cas orthologue, for which a potent anti-CRISPR protein is known.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , Regulação da Expressão Gênica , Transgenes , Regiões 3' não Traduzidas/genética , Sítios de Ligação , Proteína 9 Associada à CRISPR/antagonistas & inibidores , Proteína 9 Associada à CRISPR/biossíntese , Dependovirus/genética , Ativação Enzimática , Indução Enzimática , Genes Reporter , Células HEK293 , Células HeLa , Hepatócitos/metabolismo , Humanos , Luciferases de Renilla/análise , Luciferases de Renilla/genética , MicroRNAs , Miócitos Cardíacos/metabolismo , Especificidade de Órgãos , Isoformas de Proteínas/antagonistas & inibidores
3.
Cancers (Basel) ; 14(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077793

RESUMO

Colorectal cancer (CRC) is among the deadliest cancers worldwide, with metastasis being the main cause of patient mortality. During CRC progression the complex tumor ecosystem changes in its composition at virtually every stage. However, clonal dynamics and associated niche-dependencies at these stages are unknown. Hence, it is of importance to utilize models that faithfully recapitulate human CRC to define its clonal dynamics. We used an optical barcoding approach in mouse-derived organoids (MDOs) that revealed niche-dependent clonal selection. Our findings highlight that clonal selection is controlled by a site-specific niche, which critically contributes to cancer heterogeneity and has implications for therapeutic intervention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA