Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 708
Filtrar
1.
N Engl J Med ; 389(12): 1096-1107, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37458272

RESUMO

BACKGROUND: Trials of monoclonal antibodies that target various forms of amyloid at different stages of Alzheimer's disease have had mixed results. METHODS: We tested solanezumab, which targets monomeric amyloid, in a phase 3 trial involving persons with preclinical Alzheimer's disease. Persons 65 to 85 years of age with a global Clinical Dementia Rating score of 0 (range, 0 to 3, with 0 indicating no cognitive impairment and 3 severe dementia), a score on the Mini-Mental State Examination of 25 or more (range, 0 to 30, with lower scores indicating poorer cognition), and elevated brain amyloid levels on 18F-florbetapir positron-emission tomography (PET) were enrolled. Participants were randomly assigned in a 1:1 ratio to receive solanezumab at a dose of up to 1600 mg intravenously every 4 weeks or placebo. The primary end point was the change in the Preclinical Alzheimer Cognitive Composite (PACC) score (calculated as the sum of four z scores, with higher scores indicating better cognitive performance) over a period of 240 weeks. RESULTS: A total of 1169 persons underwent randomization: 578 were assigned to the solanezumab group and 591 to the placebo group. The mean age of the participants was 72 years, approximately 60% were women, and 75% had a family history of dementia. At 240 weeks, the mean change in PACC score was -1.43 in the solanezumab group and -1.13 in the placebo group (difference, -0.30; 95% confidence interval, -0.82 to 0.22; P = 0.26). Amyloid levels on brain PET increased by a mean of 11.6 centiloids in the solanezumab group and 19.3 centiloids in the placebo group. Amyloid-related imaging abnormalities (ARIA) with edema occurred in less than 1% of the participants in each group. ARIA with microhemorrhage or hemosiderosis occurred in 29.2% of the participants in the solanezumab group and 32.8% of those in the placebo group. CONCLUSIONS: Solanezumab, which targets monomeric amyloid in persons with elevated brain amyloid levels, did not slow cognitive decline as compared with placebo over a period of 240 weeks in persons with preclinical Alzheimer's disease. (Funded by the National Institute on Aging and others; A4 ClinicalTrials.gov number, NCT02008357.).


Assuntos
Doença de Alzheimer , Anticorpos Monoclonais Humanizados , Idoso , Feminino , Humanos , Masculino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Tomografia por Emissão de Pósitrons , Idoso de 80 Anos ou mais
2.
Cell ; 142(6): 857-67, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20817278

RESUMO

Alzheimer's Disease (AD) is complicated by pro-oxidant intraneuronal Fe(2+) elevation as well as extracellular Zn(2+) accumulation within amyloid plaque. We found that the AD ß-amyloid protein precursor (APP) possesses ferroxidase activity mediated by a conserved H-ferritin-like active site, which is inhibited specifically by Zn(2+). Like ceruloplasmin, APP catalytically oxidizes Fe(2+), loads Fe(3+) into transferrin, and has a major interaction with ferroportin in HEK293T cells (that lack ceruloplasmin) and in human cortical tissue. Ablation of APP in HEK293T cells and primary neurons induces marked iron retention, whereas increasing APP695 promotes iron export. Unlike normal mice, APP(-/-) mice are vulnerable to dietary iron exposure, which causes Fe(2+) accumulation and oxidative stress in cortical neurons. Paralleling iron accumulation, APP ferroxidase activity in AD postmortem neocortex is inhibited by endogenous Zn(2+), which we demonstrate can originate from Zn(2+)-laden amyloid aggregates and correlates with Aß burden. Abnormal exchange of cortical zinc may link amyloid pathology with neuronal iron accumulation in AD.


Assuntos
Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/antagonistas & inibidores , Precursor de Proteína beta-Amiloide/metabolismo , Ceruloplasmina/antagonistas & inibidores , Zinco/metabolismo , Doença de Alzheimer/metabolismo , Sequência de Aminoácidos , Precursor de Proteína beta-Amiloide/química , Animais , Linhagem Celular , Ceruloplasmina/química , Ceruloplasmina/metabolismo , Humanos , Ferro/metabolismo , Camundongos , Alinhamento de Sequência
3.
J Proteome Res ; 23(8): 2970-2985, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38236019

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease with a complex etiology influenced by confounding factors such as genetic polymorphisms, age, sex, and race. Traditionally, AD research has not prioritized these influences, resulting in dramatically skewed cohorts such as three times the number of Apolipoprotein E (APOE) ε4-allele carriers in AD relative to healthy cohorts. Thus, the resulting molecular changes in AD have previously been complicated by the influence of apolipoprotein E disparities. To explore how apolipoprotein E polymorphism influences AD progression, 62 post-mortem patients consisting of 33 AD and 29 controls (Ctrl) were studied to balance the number of ε4-allele carriers and facilitate a molecular comparison of the apolipoprotein E genotype. Lipid and protein perturbations were assessed across AD diagnosed brains compared to Ctrl brains, ε4 allele carriers (APOE4+ for those carrying 1 or 2 ε4s and APOE4- for non-ε4 carriers), and differences in ε3ε3 and ε3ε4 Ctrl brains across two brain regions (frontal cortex (FCX) and cerebellum (CBM)). The region-specific influences of apolipoprotein E on AD mechanisms showcased mitochondrial dysfunction and cell proteostasis at the core of AD pathophysiology in the post-mortem brains, indicating these two processes may be influenced by genotypic differences and brain morphology.


Assuntos
Doença de Alzheimer , Apolipoproteínas E , Genótipo , Lipidômica , Proteômica , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Proteômica/métodos , Feminino , Masculino , Idoso , Apolipoproteínas E/genética , Encéfalo/metabolismo , Encéfalo/patologia , Idoso de 80 Anos ou mais , Apolipoproteína E4/genética , Cerebelo/metabolismo , Cerebelo/patologia , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Alelos
4.
Neuroimage ; 285: 120494, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38086495

RESUMO

White matter hyperintensities (WMH) are nearly ubiquitous in the aging brain, and their topography and overall burden are associated with cognitive decline. Given their numerosity, accurate methods to automatically segment WMH are needed. Recent developments, including the availability of challenge data sets and improved deep learning algorithms, have led to a new promising deep-learning based automated segmentation model called TrUE-Net, which has yet to undergo rigorous independent validation. Here, we compare TrUE-Net to six established automated WMH segmentation tools, including a semi-manual method. We evaluated the techniques at both global and regional level to compare their ability to detect the established relationship between WMH burden and age. We found that TrUE-Net was highly reliable at identifying WMH regions with low false positive rates, when compared to semi-manual segmentation as the reference standard. TrUE-Net performed similarly or favorably when compared to the other automated techniques. Moreover, TrUE-Net was able to detect relationships between WMH and age to a similar degree as the reference standard semi-manual segmentation at both the global and regional level. These results support the use of TrUE-Net for identifying WMH at the global or regional level, including in large, combined datasets.


Assuntos
Leucoaraiose , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Algoritmos , Envelhecimento
5.
Ann Neurol ; 93(6): 1158-1172, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36843330

RESUMO

OBJECTIVE: Identifying cerebrospinal fluid measures of the microtubule binding region of tau (MTBR-tau) species that reflect tau aggregation could provide fluid biomarkers that track Alzheimer's disease related neurofibrillary tau pathological changes. We examined the cerebrospinal fluid (CSF) MTBR-tau species in dominantly inherited Alzheimer's disease (DIAD) mutation carriers to assess the association with Alzheimer's disease (AD) biomarkers and clinical symptoms. METHODS: Cross-sectional and longitudinal CSF from 229 DIAD mutation carriers and 130 mutation non-carriers had sequential characterization of N-terminal/mid-domain phosphorylated tau (p-tau) followed by MTBR-tau species and tau positron emission tomography (tau PET), other soluble tau and amyloid biomarkers, comprehensive clinical and cognitive assessments, and brain magnetic resonance imaging of atrophy. RESULTS: CSF MTBR-tau species located within the putative "border" region and one species corresponding to the "core" region of aggregates in neurofibrillary tangles (NFTs) increased during the presymptomatic stage and decreased during the symptomatic stage. The "border" MTBR-tau species were associated with amyloid pathology and CSF p-tau; whereas the "core" MTBR-tau species were associated stronger with tau PET and CSF measures of neurodegeneration. The ratio of the border to the core species provided a continuous measure of increasing amounts that tracked clinical progression and NFTs. INTERPRETATION: Changes in CSF soluble MTBR-tau species preceded the onset of dementia, tau tangle increase, and atrophy in DIAD. The ratio of 4R-specific MTBR-tau (border) to the NFT (core) MTBR-tau species corresponds to the pathology of NFTs in DIAD and change with disease progression. The dynamics between different MTBR-tau species in the CSF may serve as a marker of tau-related disease progression and target engagement of anti-tau therapeutics. ANN NEUROL 2023;93:1158-1172.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Estudos Transversais , Proteínas tau/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Disfunção Cognitiva/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Atrofia/patologia , Biomarcadores/líquido cefalorraquidiano , Progressão da Doença , Microtúbulos/metabolismo , Microtúbulos/patologia
6.
Mol Psychiatry ; 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001337

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with a complex pathogenesis. Senile plaques composed of the amyloid-ß (Aß) peptide in the brain are the core hallmarks of AD and a promising target for the development of disease-modifying therapies. However, over the past 20 years, the failures of clinical trials directed at Aß clearance have fueled a debate as to whether Aß is the principal pathogenic factor in AD and a valid therapeutic target. The success of the recent phase 3 trials of lecanemab (Clarity AD) and donanemab (Trailblazer Alz2), and lessons from previous Aß clearance trials provide critical evidence to support the role of Aß in AD pathogenesis and suggest that targeting Aß clearance is heading in the right direction for AD treatment. Here, we analyze key questions relating to the efficacy of Aß targeting therapies, and provide perspectives on early intervention, adequate Aß removal, sufficient treatment period, and combinatory therapeutics, which may be required to achieve the best cognitive benefits in future trials in the real world.

7.
Nature ; 554(7691): 249-254, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29420472

RESUMO

To facilitate clinical trials of disease-modifying therapies for Alzheimer's disease, which are expected to be most efficacious at the earliest and mildest stages of the disease, supportive biomarker information is necessary. The only validated methods for identifying amyloid-ß deposition in the brain-the earliest pathological signature of Alzheimer's disease-are amyloid-ß positron-emission tomography (PET) imaging or measurement of amyloid-ß in cerebrospinal fluid. Therefore, a minimally invasive, cost-effective blood-based biomarker is desirable. Despite much effort, to our knowledge, no study has validated the clinical utility of blood-based amyloid-ß markers. Here we demonstrate the measurement of high-performance plasma amyloid-ß biomarkers by immunoprecipitation coupled with mass spectrometry. The ability of amyloid-ß precursor protein (APP)669-711/amyloid-ß (Aß)1-42 and Aß1-40/Aß1-42 ratios, and their composites, to predict individual brain amyloid-ß-positive or -negative status was determined by amyloid-ß-PET imaging and tested using two independent data sets: a discovery data set (Japan, n = 121) and a validation data set (Australia, n = 252 including 111 individuals diagnosed using 11C-labelled Pittsburgh compound-B (PIB)-PET and 141 using other ligands). Both data sets included cognitively normal individuals, individuals with mild cognitive impairment and individuals with Alzheimer's disease. All test biomarkers showed high performance when predicting brain amyloid-ß burden. In particular, the composite biomarker showed very high areas under the receiver operating characteristic curves (AUCs) in both data sets (discovery, 96.7%, n = 121 and validation, 94.1%, n = 111) with an accuracy approximately equal to 90% when using PIB-PET as a standard of truth. Furthermore, test biomarkers were correlated with amyloid-ß-PET burden and levels of Aß1-42 in cerebrospinal fluid. These results demonstrate the potential clinical utility of plasma biomarkers in predicting brain amyloid-ß burden at an individual level. These plasma biomarkers also have cost-benefit and scalability advantages over current techniques, potentially enabling broader clinical access and efficient population screening.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/sangue , Precursor de Proteína beta-Amiloide/sangue , Fragmentos de Peptídeos/sangue , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Austrália , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/metabolismo , Encéfalo/metabolismo , Estudos de Casos e Controles , Disfunção Cognitiva/sangue , Disfunção Cognitiva/metabolismo , Análise Custo-Benefício , Feminino , Humanos , Imunoprecipitação , Japão , Masculino , Espectrometria de Massas , Fragmentos de Peptídeos/líquido cefalorraquidiano , Fragmentos de Peptídeos/metabolismo , Tomografia por Emissão de Pósitrons , Reprodutibilidade dos Testes
8.
Alzheimers Dement ; 20(1): 421-436, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37667412

RESUMO

INTRODUCTION: Biomarkers remain mostly unavailable for non-Alzheimer's disease neuropathological changes (non-ADNC) such as transactive response DNA-binding protein 43 (TDP-43) proteinopathy, Lewy body disease (LBD), and cerebral amyloid angiopathy (CAA). METHODS: A multilabel non-ADNC classifier using magnetic resonance imaging (MRI) signatures was developed for TDP-43, LBD, and CAA in an autopsy-confirmed cohort (N = 214). RESULTS: A model using demographic, genetic, clinical, MRI, and ADNC variables (amyloid positive [Aß+] and tau+) in autopsy-confirmed participants showed accuracies of 84% for TDP-43, 81% for LBD, and 81% to 93% for CAA, outperforming reference models without MRI and ADNC biomarkers. In an ADNI cohort (296 cognitively unimpaired, 401 mild cognitive impairment, 188 dementia), Aß and tau explained 33% to 43% of variance in cognitive decline; imputed non-ADNC explained an additional 16% to 26%. Accounting for non-ADNC decreased the required sample size to detect a 30% effect on cognitive decline by up to 28%. DISCUSSION: Our results lead to a better understanding of the factors that influence cognitive decline and may lead to improvements in AD clinical trial design.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Doença por Corpos de Lewy , Humanos , Doença de Alzheimer/patologia , Medicina de Precisão , Doença por Corpos de Lewy/patologia , Proteínas de Ligação a DNA/metabolismo , Biomarcadores
9.
Alzheimers Dement ; 20(2): 1350-1359, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984813

RESUMO

INTRODUCTION: The current study evaluated the relationship between habitual physical activity (PA) levels and brain amyloid beta (Aß) over 15 years in a cohort of cognitively unimpaired older adults. METHODS: PA and Aß measures were collected over multiple timepoints from 731 cognitively unimpaired older adults participating in the Australian Imaging, Biomarkers and Lifestyle (AIBL) Study of Aging. Regression modeling examined cross-sectional and longitudinal relationships between PA and brain Aß. Moderation analyses examined apolipoprotein E (APOE) ε4 carriage impact on the PA-Aß relationship. RESULTS: PA was not associated with brain Aß at baseline (ß = -0.001, p = 0.72) or over time (ß = -0.26, p = 0.24). APOE ε4 status did not moderate the PA-Aß relationship over time (ß = 0.12, p = 0.73). Brain Aß levels did not predict PA trajectory (ß = -54.26, p = 0.59). DISCUSSION: Our study did not identify a relationship between habitual PA and brain Aß levels. HIGHLIGHTS: Physical activity levels did not predict brain amyloid beta (Aß) levels over time in cognitively unimpaired older adults (≥60 years of age). Apolipoprotein E (APOE) ε4 carrier status did not moderate the physical activity-brain Aß relationship over time. Physical activity trajectories were not impacted by brain Aß levels.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Idoso , Peptídeos beta-Amiloides/metabolismo , Estudos Transversais , Apolipoproteína E4/genética , Austrália , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Apolipoproteínas E/genética , Exercício Físico , Tomografia por Emissão de Pósitrons
10.
Alzheimers Dement ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324510

RESUMO

INTRODUCTION: We investigated longitudinal associations between self-reported exercise and Alzheimer's disease (AD)-related biomarkers in individuals with autosomal dominant AD (ADAD) mutations. METHODS: Participants were 308 ADAD mutation carriers aged 39.7 ± 10.8 years from the Dominantly Inherited Alzheimer's Network. Weekly exercise volume was measured via questionnaire and associations with brain volume (magnetic resonance imaging), cerebrospinal fluid biomarkers, and brain amyloid beta (Aß) measured by positron emission tomography were investigated. RESULTS: Greater volume of weekly exercise at baseline was associated with slower accumulation of brain Aß at preclinical disease stages ß = -0.16 [-0.23 to -0.08], and a slower decline in multiple brain regions including hippocampal volume ß = 0.06 [0.03 to 0.08]. DISCUSSION: Exercise is associated with more favorable profiles of AD-related biomarkers in individuals with ADAD mutations. Exercise may have therapeutic potential for delaying the onset of AD; however, randomized controlled trials are vital to determine a causal relationship before a clinical recommendation of exercise is implemented. HIGHLIGHTS: Greater self-reported weekly exercise predicts slower declines in brain volume in autosomal dominant Alzheimer's disease (ADAD). Greater self-reported weekly exercise predicts slower accumulation of brain amyloid beta in ADAD. Associations varied depending on closeness to estimated symptom onset.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA