Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Med ; 11(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35160177

RESUMO

Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of myeloid cells that suppress immune responses in cancer, infection, and trauma. They mainly act by inhibiting T-cells, natural-killer cells, and dendritic cells, and also by inducing T-regulatory cells, and modulating macrophages. Although they are mostly associated with adverse prognosis of the underlying disease entity, they may display positive effects in specific situations, such as in allogeneic hematopoietic stem cell transplantation (HSCT), where they suppress graft-versus-host disease (GVHD). They also contribute to the feto-maternal tolerance, and in the fetus growth process, whereas several pregnancy complications have been associated with their defects. Human umbilical cord blood (UCB) is a source rich in MDSCs and their myeloid progenitor cells. Recently, a number of studies have investigated the generation, isolation, and expansion of UCB-MDSCs for potential clinical application associated with their immunosuppressive properties, such as GVHD, and autoimmune and inflammatory diseases. Given that a significant proportion of UCB units in cord blood banks are not suitable for clinical use in HSCT, they might be used as a significant source of MDSCs for research and clinical purposes. The current review summarizes the roles of MDSCs in the UCB, as well as their promising applications.

2.
NPJ Syst Biol Appl ; 6(1): 30, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929096

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
NPJ Syst Biol Appl ; 6(1): 23, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737302

RESUMO

The deregulated genes in colorectal cancer (CRC) vary significantly across different studies. Thus, a systems biology approach is needed to identify the co-deregulated genes (co-DEGs), explore their molecular networks, and spot the major hub proteins within these networks. We reanalyzed 19 GEO gene expression profiles to identify and annotate CRC versus normal signatures, single-gene perturbation, and single-drug perturbation signatures. We identified the co-DEGs across different studies, their upstream regulating kinases and transcription factors (TFs). Connectivity Map was used to identify likely repurposing drugs against CRC within each group. The functional changes of the co-upregulated genes in the first category were mainly associated with negative regulation of transforming growth factor ß production and glomerular epithelial cell differentiation; whereas the co-downregulated genes were enriched in cotranslational protein targeting to the membrane. We identified 17 hub proteins across the co-upregulated genes and 18 hub proteins across the co-downregulated genes, composed of well-known TFs (MYC, TCF3, PML) and kinases (CSNK2A1, CDK1/4, MAPK14), and validated most of them using GEPIA2 and HPA, but also through two signature gene lists composed of the co-up and co-downregulated genes. We further identified a list of repurposing drugs that can potentially target the co-DEGs in CRC, including camptothecin, neostigmine bromide, emetine, remoxipride, cephaeline, thioridazine, and omeprazole. Similar analyses were performed in the co-DEG signatures in single-gene or drug perturbation experiments in CRC. MYC, PML, CDKs, CSNK2A1, and MAPKs were common hub proteins among all studies. Overall, we identified the critical genes in CRC and we propose repurposing drugs that could be used against them.


Assuntos
Neoplasias Colorretais/genética , Biologia Computacional , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Transcrição Gênica , Ontologia Genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA