Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33558293

RESUMO

Gonorrhea is a common, sexually transmitted disease caused by Neisseria gonorrhoeae Multidrug-resistant N. gonorrhoeae is an urgent threat, and the development of a new antimicrobial agent that functions via a new mechanism is strongly desired. We evaluated the in vitro and in vivo activities of a DNA gyrase/topoisomerase IV inhibitor, TP0480066, which is a novel 8-(methylamino)-2-oxo-1,2-dihydroquinoline derivative. The MICs of TP0480066 were substantially lower than those of other currently or previously used antimicrobials against gonococcal strains demonstrating resistance to fluoroquinolones, macrolides, ß-lactams, and aminoglycosides (MICs, ≤0.0005 µg/ml). Additionally, no cross-resistance was observed between TP0480066 and ciprofloxacin. The frequencies of spontaneous resistance to TP0480066 for N. gonorrhoeae ATCC 49226 were below the detection limit (<2.4 × 10-10) at concentrations equivalent to 32× MIC. TP0480066 also showed potent in vitro bactericidal activity and in vivo efficacy in a mouse model of N. gonorrhoeae infection. These data suggest that TP0480066 is a candidate antimicrobial agent for gonococcal infections.


Assuntos
Gonorreia , Neisseria gonorrhoeae , Animais , Antibacterianos/farmacologia , DNA Girase/genética , DNA Topoisomerase IV/genética , Farmacorresistência Bacteriana , Fluoroquinolonas , Gonorreia/tratamento farmacológico , Camundongos , Testes de Sensibilidade Microbiana
2.
Bioorg Med Chem ; 28(22): 115776, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33032189

RESUMO

The global increase in multidrug-resistant pathogens has caused severe problems in the treatment of infections. To overcome these difficulties, the advent of a new chemical class of antibacterial drug is eagerly desired. We aimed at creating novel antibacterial agents against bacterial type II topoisomerases, which are well-validated targets. TP0480066 (compound 32) has been identified by using structure-based optimization originated from lead compound 1, which was obtained as a result of our previous lead identification studies. The MIC90 values of TP0480066 against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE), and genotype penicillin-resistant Streptococcus pneumoniae (gPRSP) were 0.25, 0.015, and 0.06 µg/mL, respectively. Hence, TP0480066 can be regarded as a promising antibacterial drug candidate of this chemical class.


Assuntos
Antibacterianos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Quinolinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana/efeitos dos fármacos , Células Hep G2 , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/enzimologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/química , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/enzimologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Regulador Transcricional ERG/antagonistas & inibidores , Regulador Transcricional ERG/metabolismo , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Enterococos Resistentes à Vancomicina/enzimologia
3.
Chem Pharm Bull (Tokyo) ; 64(3): 228-38, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26936050

RESUMO

We previously reported 2-[2-(4-tert-butylphenyl)ethyl]-N-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinoline-6-sulfonamide 2 as on orally available monoacylglycerol acyltransferase 2 (MGAT2) inhibitor which exhibited an in vivo efficacy at an oral dose of 100 mg/kg in a mouse oral lipid tolerance test. Further optimization of compound 2 to improve the intrinsic potency culminated in the identification of compound 11. Compound 11 showed a >50-fold lower IC50 against human MGAT2 enzyme than 2. Oral administration of 11 at a dose of 3 mg/kg in the oral lipid tolerance test resulted in significant suppression of triglyceride synthesis.


Assuntos
N-Acetilglucosaminiltransferases/antagonistas & inibidores , Tetra-Hidroisoquinolinas/farmacologia , Administração Oral , Humanos , Relação Estrutura-Atividade , Tetra-Hidroisoquinolinas/administração & dosagem , Tetra-Hidroisoquinolinas/química
4.
ACS Omega ; 5(17): 10145-10159, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32391502

RESUMO

DNA gyrase and topoisomerase IV are well-validated pharmacological targets, and quinolone antibacterial drugs are marketed as their representative inhibitors. However, in recent years, resistance to these existing drugs has become a problem, and new chemical classes of antibiotics that can combat resistant strains of bacteria are strongly needed. In this study, we applied our hit-to-lead (H2L) chemistry for the identification of a new chemical class of GyrB/ParE inhibitors by efficient use of thermodynamic parameters. Investigation of the core fragments obtained by fragmentation of high-throughput screening hit compounds and subsequent expansion of the hit fragment was performed using isothermal titration calorimetry (ITC). The 8-(methylamino)-2-oxo-1,2-dihydroquinoline derivative 13e showed potent activity against Escherichia coli DNA gyrase with an IC50 value of 0.0017 µM. In this study, we demonstrated the use of ITC for primary fragment screening, followed by structural optimization to obtain lead compounds, which advanced into further optimization for creating novel antibacterial agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA