Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Int ; 154: 106567, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33882431

RESUMO

BACKGROUND: Accumulating evidence suggests that environmental pollutants may contribute to the occurrence of congenital heart defects (CHDs). However, no previous studies have evaluated the impact of perfluoroalkyl substances (PFAS), persistent environmental pollutants, on CHDs. This exploratory study aimed to generate testable hypotheses of the association between gestational PFAS and the risk of CHDs. METHODS: A nested case-control study was conducted in a cohort of 11,578 newborns. Exposure odds ratios were compared between 158 CHD cases and 158 non-malformed controls delivered at the same hospital, individually matched by maternal age (±5 years) and parity. Concentrations of 27 PFAS, including linear and branched isomers, were determined in maternal peripheral blood and cord blood plasma collected before and during delivery using a ultra-performance liquid chromatography coupled to mass spectrometry. Conditional logistic regression was utilized to evaluate associations between individual PFAS and the risk of CHDs, adjusted for confounding variables. RESULTS: Maternal gestational exposure to the highly branched perfluorooctanesulfonate (PFOS) isomer potassium 6-trifluoromethyperfluoroheptanesulfonate [6 m-PFOS, adjusted odds ratio (aOR) (95% CI) = 2.47(1.05,5.83)] and perfluorodecanoic acid [PFDA, aOR (95% CI) = 2.33(1.00,5.45)] were associated with increased odds of septal defects with statistical significance, while linear PFOS [aOR (95% CI) = 3.65(1.09,12.16)] and perfluoro-n-dodecanoic acid [PFDoA, aOR (95% CI) = 6.82(1.75, 26.61)] were associated with conotruncal defects. Effect estimates also suggested associations for higher maternal 6 m-PFOS and PFDA concentrations with ventricular septal defect. However, we did not observe these associations in cord blood. CONCLUSION: These exploratory findings suggested that gestational exposure to most PFAS, especially linear PFOS, 6 m-PFOS, PFDA, and PFDoA, was associated with greater risks for septal and conotruncal defects. However, a larger, adequately powered study is needed to confirm our findings, and to more comprehensively investigate the potential teratogenic effects of other more recently introduced PFAS, and on associations with individual CHD subtypes.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Cardiopatias Congênitas , Ácidos Alcanossulfônicos/toxicidade , Estudos de Casos e Controles , Poluentes Ambientais/toxicidade , Feminino , Fluorocarbonos/toxicidade , Cardiopatias Congênitas/induzido quimicamente , Cardiopatias Congênitas/epidemiologia , Humanos , Recém-Nascido , Projetos Piloto , Gravidez
2.
Brain Behav Immun Health ; 4: 100069, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34589851

RESUMO

Female and male mice of the BTBR T + Itpr3 tf /J (BTBR) strain have behaviors that resemble autism spectrum disorder. In comparison to C57BL/6 (B6) mice, BTBR mice have elevated humoral immunity, in that they have naturally high serum IgG levels and generate high levels of IgG antibodies, including autoantibodies to brain antigens. This study focused on the specificities of autoantibodies and the immune cells and their transcription factors that might be responsible for the autoantibodies. BTBR IgG autoantibodies bind to neurons better than microglia and with highest titer to nuclear antigens. Two of the antigens identified were alpha-enolase (ENO1) and dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial (DLST). Surprisingly based on IgG levels, the blood and spleens of BTBR mice have more CD4+ and CD8+ T cells, but fewer B cells than B6 mice. The high levels of autoantibodies in BTBR relates to their splenic T follicular helper (Tfh) cell levels, which likely are responsible for the higher number of plasma cells in BTBR mice than B6 mice. BTBR mice have increased gene expression of interleukin-21 receptor (I l -21 r) and Paired Box 5 (Pax5), which are known to aid B cell differentiation to plasma cells, and an increased Lysine Demethylase 6B (Kdm6b)/DNA Methyltransferase 1 (Dnmt1) ratio, which increases gene expression. Identification of gene expression and immune activities of BTBR mice may aid understanding of mechanisms associated with autism since neuroimmune network interactions have been posited and induction of autoantibodies may drive the neuroinflammation associated with autism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA