Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 106, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38217255

RESUMO

Glioblastoma is one of the most lethal tumors, displaying striking cellular heterogeneity and drug resistance. The prognosis of patients suffering from glioblastoma after 5 years is only 5%. In the present work, capsaicin analogues bearing modifications on the acyl chain with long-chain fatty acids showed promising anti-tumoral activity by its cytotoxicity on U-87 and U-138 glioblastoma multiforme cells. The capsaicin analogues were enzymatically synthetized with cross-linked enzyme aggregates of lipase B from Candida antarctica (CALB). The catalytic performance of recombinant CALB-CLEAs was compared to their immobilized form on a hydrophobic support. After 72 h of reaction, the synthesis of capsaicin analogues from linoleic acid, docosahexaenoic acid, and punicic acid achieved a maximum conversion of 69.7, 8.3 and 30.3% with CALB-CLEAs, respectively. Similar values were obtained with commercial CALB, with conversion yields of 58.3, 24.2 and 22% for capsaicin analogues from linoleic acid, DHA and punicic acid, respectively. Olvanil and dohevanil had a significant cytotoxic effect on both U-87 and U-138 glioblastoma cells. Irrespective of the immobilization form, CALB is an efficient biocatalyst for the synthesis of anti-tumoral capsaicin derivatives. KEY POINTS: • This is the first report concerning the enzymatic synthesis of capsaicin analogues from docosahexaenoic acid and punicic acid with CALB-CLEAs. • The viability U-87 and U-138 glioblastoma cells was significantly affected after incubation with olvanil and dohevanil. • Capsaicin analogues from fatty acids obtained by CALB-CLEAs are promising candidates for therapeutic use as cytotoxic agents in glioblastoma cancer cells.


Assuntos
Capsaicina , Glioblastoma , Humanos , Capsaicina/farmacologia , Enzimas Imobilizadas/metabolismo , Glioblastoma/tratamento farmacológico , Proteínas Fúngicas/metabolismo
2.
Chembiochem ; 23(22): e202200354, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-35781918

RESUMO

Feruloyl esterases (FAEs) are versatile enzymes able to release hydroxycinnamic acids or synthesize their ester derivatives, both molecules with interesting biological activities such as: antioxidants, antifungals, antivirals, antifibrotic, anti-inflammatory, among others. The importance of these molecules in medicine, food or cosmetic industries provides FAEs with several biotechnological applications as key industrial biocatalysts. However, FAEs have some operational limitations that must be overcome, which can be addressed through different protein engineering approaches to enhance their thermal stability, catalytic efficiencies, and selectivity. This review aims to present a brief historical tour through the mutagenesis strategies employed to improve enzymes performance and analyze the current protein engineering strategies applied to FAEs as interesting biocatalysts. Finally, an outlook of the future of FAEs protein engineering approaches to achieve successful industrial biocatalysts is given.


Assuntos
Hidrolases de Éster Carboxílico , Engenharia de Proteínas , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Ácidos Cumáricos/metabolismo , Biotecnologia , Catálise , Biocatálise , Enzimas/metabolismo
3.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293330

RESUMO

Over the past thirty years, research has shown the huge potential of chitosan in biomedical applications such as drug delivery, tissue engineering and regeneration, cancer therapy, and antimicrobial treatments, among others. One of the major advantages of this interesting polysaccharide is its modifiability, which facilitates its use in tailor-made applications. In this way, the molecular structure of chitosan has been conjugated with multiple molecules to modify its mechanical, biological, or chemical properties. Here, we review the conjugation of chitosan with some bioactive molecules: hydroxycinnamic acids (HCAs); since these derivatives have been probed to enhance some of the biological effects of chitosan and to fine-tune its characteristics for its application in the biomedical field. First, the main characteristics of chitosan and HCAs are presented; then, the currently employed conjugation strategies between chitosan and HCAs are described; and, finally, the studied biomedical applications of these derivatives are discussed to present their limitations and advantages, which could lead to proximal therapeutic uses.


Assuntos
Anti-Infecciosos , Quitosana , Quitosana/química , Materiais Biocompatíveis/química , Ácidos Cumáricos/uso terapêutico , Engenharia Tecidual , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Anti-Infecciosos/química
4.
Appl Microbiol Biotechnol ; 105(10): 3901-3917, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33928423

RESUMO

Alkyl hydroxycinnamates (AHs) is a group of molecules of biotechnological interest due to their cosmetic, food, and pharmaceutical applications. Among their most interesting uses are as UV protectants, skin depigmentation agents, and antioxidant ingredients which are often claimed for their antitumoral potential. Nowadays, many sustainable enzymatic approaches using low-cost starting materials are available and interesting immobilization techniques are helping to increase the reuse of the biocatalysts, allowing the intensification of the processes and increasing AHs accessibility. Here a convenient summary of AHs most interesting biological activities and possible applications is presented. A deeper analysis of the art state to obtain AHs, focusing on most employed enzymatic synthesis approaches, their sustainability, acyl donors relevance, and most interesting enzyme immobilization strategies is provided.Key points• Most interesting alkyl hydroxycinnamates applications are summarized.• Enzymatic approaches to obtain alkyl hydroxycinnamates are critically discussed.• Outlook of enzyme immobilization strategies to attain alkyl hydroxycinnamates.


Assuntos
Biotecnologia , Enzimas Imobilizadas , Enzimas Imobilizadas/metabolismo , Esterificação
5.
Int J Mol Sci ; 22(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34639079

RESUMO

Oligodendrocyte precursor cell (OPC) migration is a mechanism involved in remyelination; these cells migrate from niches in the adult CNS. However, age and disease reduce the pool of OPCs; as a result, the remyelination capacity of the CNS decreases over time. Several experimental studies have introduced OPCs to the brain via direct injection or intrathecal administration. In this study, we used the nose-to brain pathway to deliver oligodendrocyte lineage cells (human oligodendroglioma (HOG) cells), which behave similarly to OPCs in vitro. To this end, we administered GFP-labelled HOG cells intranasally to experimental animals, which were subsequently euthanised at 30 or 60 days. Our results show that the intranasal route is a viable route to the CNS and that HOG cells administered intranasally migrate preferentially to niches of OPCs (clusters created during embryonic development and adult life). Our study provides evidence, albeit limited, that HOG cells either form clusters or adhere to clusters of OPCs in the brains of experimental animals.


Assuntos
Encéfalo/fisiologia , Doenças Desmielinizantes/terapia , Células Precursoras de Oligodendrócitos/citologia , Oligodendroglioma/química , Remielinização , Células-Tronco/citologia , Administração Intranasal , Animais , Encéfalo/citologia , Diferenciação Celular , Células Cultivadas , Humanos
6.
Int Microbiol ; 23(2): 335-343, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31823203

RESUMO

Gastrointestinal lipase inhibitors are molecules of pharmaceutical interest due to their use as anti-obesity drugs. In this study, forty strains isolated from soil and sediments were identified with the ability to produce inhibition of gastrointestinal lipase activity. The biomass extract of these strains showed at least 50% inhibition in the hydrolysis of tributyrin by recombinant human pancreatic lipase (rHPL) or rabbit gastric lipase (RGL) by in vitro assays. Based on gene sequencing, the isolates were identified mainly as Streptomycetes. Moreover, none of the identified strains has been reported to be lipase inhibitor producers, so they can be viewed as potential sources for obtaining new drugs. IC50 values of the three best inhibitor extracts showed that AC104-10 was the most promising strain for production of gastrointestinal lipase inhibitors. AC104-10 shows 99% homology (16S rRNA gene fragment) to Streptomyces cinereoruber strain NBRC 12756. An inhibitory study over trypsin activity revealed that AC104-10 extract, as well as THL, had no significant effect on the activity of this protease, showing its specificity for lipases. In addition, analyzes by MALDI-TOF mass spectrometry of the enzyme-inhibitor complex revealed that there is a covalent interaction of the AC104-10 inhibitor with the catalytic serine of the pancreatic lipase, and that the molecular weight of the inhibitor is approximately 686.19 Da.


Assuntos
Sedimentos Geológicos/microbiologia , Streptomyces/isolamento & purificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Animais , Produtos Biológicos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Lagos/microbiologia , Lipase/antagonistas & inibidores , Lipase/metabolismo , RNA Ribossômico 16S , Microbiologia do Solo , Streptomyces/genética , Streptomyces/metabolismo
7.
Appl Microbiol Biotechnol ; 104(23): 10033-10045, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33026494

RESUMO

The enzymatic synthesis of alkyl ferulates is an important reaction in cosmetic and pharmaceutical chemistries, since it may allow to expand the biorefinery concept valorizing biomass wastes enriched in ferulic acid. However, robust biocatalysts for that purpose are scarce. Herein, we have immobilized the type A feruloyl esterase from Aspergillus niger (AnFaeA) as cross-linked enzyme aggregates, employing chitosan as co-feeder (ChCLEAs). High immobilization yields and relative activity recovery were attained in all assessed conditions (> 93%). Furthermore, we enhanced the thermal stability of the soluble enzyme 32-fold. AnFaeA-ChCLEAs were capable to quantitatively perform the solvent-free direct esterification of short- to medium-chain alkyl ferulates (C4-C12) in less than 24 h. By raising the operational temperature to 50 °C, AnFaeA-ChCLEAs transformed 350 mM ferulic acid into isopentyl ferulate with a space-time yield of 46.1 g of product × L-1 × day-1, 73-fold higher than previously reported. The overall sustainability of this alkyl ferulate production bioprocess is supported by the high total turnover number (TTN 7 × 105) and the calculated green metrics (E factor = 30). Therefore, we herein present a robust, efficient, and versatile heterogeneous biocatalyst useful for the synthesis of a wide diversity of alkyl ferulates. KEY POINTS: • CLEAs of feruloyl esterase A from A. niger using chitosan as co-feeder were obtained. • Microenvironment of the biocatalysts allowed to obtain C1 to C18 alkyl ferulates. • Biocatalyst at boundary conditions showed a high productivity of 46 g/L day. Graphical Abstract.


Assuntos
Aspergillus niger , Quitosana , Hidrolases de Éster Carboxílico
8.
Curr Microbiol ; 76(10): 1215-1224, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31254008

RESUMO

Nejayote is an alkaline wastewater generated during the nixtamalization process. Nejayote contains high-value compounds such as ferulic acid (FA), which is widely employed as a substrate for the biotechnological production of flavors and aromas. In the present study, the isolation, identification, and characterization of a native strain of Bacillus megaterium were performed, and its capacity to produce 4-vinylguaiacol (4VG) from ferulic acid was evaluated by employing growing cell and resting cell systems. Growing cells of native B. megaterium biotransformed 6 mM crude FA in nejayote into 2.1 mM 4VG, reaching a productivity of 0.21 mM h-1 4VG, while nejayote enriched with FA at 10, 15, and 25 mM resulted in the formation of 2.4, 3.8, and 6.2 mM 4VG and productivities of 0.24, 0.38, and 0.51 mM h-1 4VG, respectively. In the resting cell system, from 6 and 25 mM pure FA, 3.5 mM 4VG was produced (0.18 mM h-1 4VG), while at 10 and 15 mM FA, 4.6 and 5.1 mM 4VG (average of 0.24 mM h-1 4VG) were obtained, respectively. The native B. megaterium strain, isolated from nejayote, showed great biotechnological potential to produce 4VG from crude FA contained in this wastewater, in which other Bacillus species, such as B. licheniformis and B. cereus, were unable to grow and biotransform FA into 4VG.


Assuntos
Bacillus megaterium/classificação , Bacillus megaterium/metabolismo , Ácidos Cumáricos/metabolismo , Águas Residuárias/microbiologia , Zea mays , Bacillus megaterium/genética , Bacillus megaterium/crescimento & desenvolvimento , Biomassa , Biotransformação , Ácidos Cumáricos/química , Guaiacol/análogos & derivados , Guaiacol/metabolismo , Filogenia , Águas Residuárias/química
9.
J Lipid Res ; 56(5): 1057-67, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25748441

RESUMO

A continuous assay is proposed for the screening of acidic, neutral, or alkaline lipases using microtiter plates, emulsified short- and medium-chain TGs, and a pH indicator. The lipase activity measurement is based on the decrease of the pH indicator optical density due to protonation which is caused by the release of FFAs during the hydrolysis of TGs and thus acidification. Purified lipases with distinct pH optima and an esterase were used to validate the method. The rate of lipolysis was found to be linear with time and proportional to the amount of enzyme added in each case. Specific activities measured with this microplate assay method were lower than those obtained by the pH-stat technique. Nevertheless, the pH-dependent profiles of enzymatic activity were similar with both assays. In addition, the substrate preference of each enzyme tested was not modified and this allowed discriminating lipase and esterase activities using tributyrin (low water solubility) and tricaprylin (not water soluble) as substrates. This continuous lipase assay is compatible with a high sample throughput and can be applied for the screening of lipases and lipase inhibitors from biological samples.


Assuntos
Caprilatos/química , Lipase/química , Triglicerídeos/química , Corantes/química , Ensaios Enzimáticos , Humanos , Concentração de Íons de Hidrogênio , Cinética
10.
3 Biotech ; 13(1): 13, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36540412

RESUMO

A simple screening methodology was employed to correlate the structures of hydroxycinnamic acids (HCAs) and their esterified derivatives with their in vitro antifungal activity over Fusarium oxysporum f. sp. lycopersici. The antifungal activity of the tested HCAs, i.e., coumaric > ferulic > sinapinic > caffeic acid, was higher after esterification and when the coumaric acid hydroxyl group was at the ortho-position. This outcome was strengthened by the elongation of the alkyl chain to 4-carbons and, particularly, by the esterification with isobutyl alcohol. The highest antifungal activity was obtained from isobutyl o-coumarate (iBoC), which inhibits 70% of mycelial growth at 1.2 mM. Thereby, a heterogeneous catalysis strategy was optimized by using the response surface methodology. At the best conditions found, the synthesis of iBoC was scaled up to 15 g, achieving 96% conversion yield in 48 h in a stirred batch reactor. This study reveals for the first time the potential of iBoC to provide commercial materials as antifungal agents to control F. oxysporum and other phytopathogenic fungi. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03425-7.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA