Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microorganisms ; 10(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36013938

RESUMO

Aquaculture activities have been implicated as responsible for the emergence of antimicrobial resistance (AMR), leading to broad dissemination and transference of antibiotic resistance to pathogens that affect humans and animals. The current study investigates the on-farm practices and environmental risk factors that can potentially drive the development and emergence of multi-drug-resistant (MDR) Escherichia coli and Vibrio parahaemolyticus in the aquaculture system. A cross-sectional study was conducted on 19 red hybrid tilapia (Oreochromis spp.) and 13 Asian seabass (Lates calcarifer, Bloch 1970) farms on the west coast of peninsular Malaysia. Data were collected using a structured questionnaire pertaining to farm demography, on-farm management practices and environmental characteristics. Multi-drug-resistant E. coli (n = 249) and V. parahaemolyticus (n = 162) isolates were analyzed using multi-level binary logistic regression to identify important drivers for the occurrence and proliferation of the MDR bacteria. On-farm practices such as manuring the pond (OR = 4.5; 95% CI = 1.21-16.57) were significantly associated with the occurrence of MDR E. coli, while earthen ponds (OR = 8.2; 95% CI = 1.47-45.2) and human activity adjacent to the farm (OR = 4.6; 95% CI = 0.75-27.98) were associated with an increased likelihood of MDR V. parahaemolyticus. Considering the paucity of information on the drivers of AMR in the aquaculture production in this region, these findings indicate the targeted interventions implementable at aquaculture farms to efficiently abate the risk of MDR amongst bacteria that affect fish that are of public health importance.

2.
Antibiotics (Basel) ; 11(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35203739

RESUMO

Antibiotics are widely used in intensive fish farming, which in turn increases the emergence of antimicrobial-resistant (AMR) bacteria in the aquatic environment. The current study investigates the prevalence and determines the antimicrobial susceptibility of E. coli, Salmonella, and Vibrio in farmed fishes on the west coast of Peninsular Malaysia. Over a period of 12 months, 32 aquaculture farms from the Malaysian states of Selangor, Negeri Sembilan, Melaka, and Perak were sampled. Both E. coli and Salmonella were highly resistant to erythromycin, ampicillin, tetracycline, and trimethoprim, while Vibrio was highly resistant to ampicillin and streptomycin. Resistance to the antibiotics listed as the highest priority and critically important for human therapy, such as colistin in E. coli (18.1%) and Salmonella (20%) in fish, is a growing public health concern. The multi-drug resistance (MDR) levels of E. coli and Salmonella in tilapia were 46.5% and 77.8%, respectively. Meanwhile, the MDR levels of E. coli, Salmonella, V. parahaemolyticus, V. vulnificus and V. cholerae in Asian seabass were 34%, 100%, 21.6%, 8.3% and 16.7%, respectively. Our findings provide much-needed information on AMR in aquaculture settings that can be used to tailor better strategies for the use of antibiotics in aquaculture production at the local and regional levels.

3.
Vaccines (Basel) ; 8(4)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291587

RESUMO

Vibrio harveyi causes vibriosis in various commercial marine fish species. The infection leads to significant economic losses for aquaculture farms, and vaccination is an alternative approach for the prevention and control of fish diseases for aquaculture sustainability. This study describes the use of formalin-killed Vibrio harveyi (FKVh) strain Vh1 as a vaccine candidate to stimulate innate and adaptive immunities against vibriosis in a marine red hybrid tilapia model. Tilapia are fast growing; cheap; resistant to diseases; and tolerant to adverse environmental conditions of fresh water, brackish water, and marine water and because of these advantages, marine red hybrid tilapia is a suitable candidate as a model to study fish diseases and vaccinations against vibriosis. A total of 180 healthy red hybrid tilapias were gradually adapted to the marine environment before being divided into two groups, with 90 fish in each group and were kept in triplicate with 30 fish per tank. Group 1 was vaccinated intraperitoneally with 100 µL of FKVh on week 0, and a booster dose was similarly administered on week 2. Group 2 was similarly injected with PBS. Skin mucus, serum, and gut lavage were collected weekly for enzyme-linked immunosorbent assay (ELISA) and a lysozyme activity assay from a total of 30 fish of each group. On week 4, the remaining 60 fish of Groups 1 and 2 were challenged with 108 cfu/fish of live Vibrio harveyi. The clinical signs were monitored while the survival rate was recorded for 48 h post-challenge. Vaccination with FKVh resulted in a significantly (p < 0.05) higher rate of survival (87%) compared to the control (20%). The IgM antibody titer and lysozyme activities of Group 1 were significantly (p < 0.05) higher than the unvaccinated Groups 2 in most weeks throughout the experiment. Therefore, the intraperitoneal exposure of marine red hybrid tilapia to killed V. harveyi enhanced the resistance and antibody response of the fish against vibriosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA