Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 601(10): 1897-1924, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36916205

RESUMO

Sensory and corticospinal tract (CST) pathways activate spinal GABAergic interneurons that have axoaxonic connections onto proprioceptive (Ia) afferents that cause long-lasting depolarizations (termed primary afferent depolarization, PAD). In rodents, sensory-evoked PAD is produced by GABAA receptors at nodes of Ranvier in Ia afferents, rather than at presynaptic terminals, and facilitates spike propagation to motoneurons by preventing branch-point failures, rather than causing presynaptic inhibition. We examined in 40 human participants whether putative activation of Ia-PAD by sensory or CST pathways can also facilitate Ia afferent activation of motoneurons via the H-reflex. H-reflexes in several leg muscles were facilitated by prior conditioning from low-threshold proprioceptive, cutaneous or CST pathways, with a similar long-lasting time course (∼200 ms) to phasic PAD measured in rodent Ia afferents. Long trains of cutaneous or proprioceptive afferent conditioning produced longer-lasting facilitation of the H-reflex for up to 2 min, consistent with tonic PAD in rodent Ia afferents mediated by nodal α5-GABAA receptors for similar stimulation trains. Facilitation of H-reflexes by this conditioning was likely not mediated by direct facilitation of the motoneurons because isolated stimulation of sensory or CST pathways did not alone facilitate the tonic firing rate of motor units. Furthermore, cutaneous conditioning increased the firing probability of single motor units (motoneurons) during the H-reflex without increasing their firing rate at this time, indicating that the underlying excitatory postsynaptic potential was more probable, but not larger. These results are consistent with sensory and CST pathways activating nodal GABAA receptors that reduce intermittent failure of action potentials propagating into Ia afferent branches. KEY POINTS: Controlled execution of posture and movement requires continually adjusted feedback from peripheral sensory pathways, especially those that carry proprioceptive information about body position, movement and effort. It was previously thought that the flow of proprioceptive feedback from Ia afferents was only reduced by GABAergic neurons in the spinal cord that sent axoaxonic projections to the terminal endings of sensory axons (termed GABAaxo neurons). Based on new findings in rodents, we provide complementary evidence in humans to suggest that sensory and corticospinal pathways known to activate GABAaxo neurons that project to dorsal parts of the Ia afferent also increase the flow of proprioceptive feedback to motoneurons in the spinal cord. These findings support a new role for spinal GABAaxo neurons in facilitating afferent feedback to the spinal cord during voluntary or reflexive movements.


Assuntos
Neurônios Motores , Medula Espinal , Humanos , Neurônios Motores/fisiologia , Medula Espinal/fisiologia , Tratos Piramidais/fisiologia , Transmissão Sináptica/fisiologia , Músculo Esquelético/fisiologia , Vias Aferentes , Ácido gama-Aminobutírico , Neurônios Aferentes/fisiologia
2.
J Physiol ; 601(10): 1925-1956, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36928599

RESUMO

Suppression of the extensor H-reflex by flexor afferent conditioning is thought to be produced by a long-lasting inhibition of extensor Ia afferent terminals via GABAA receptor-activated primary afferent depolarization (PAD). Given the recent finding that PAD does not produce presynaptic inhibition of Ia afferent terminals, we examined in 28 participants if H-reflex suppression is instead mediated by post-activation depression of the extensor Ia afferents triggered by PAD-evoked spikes and/or by a long-lasting inhibition of the extensor motoneurons. A brief conditioning vibration of the flexor tendon suppressed both the extensor soleus H-reflex and the tonic discharge of soleus motor units out to 150 ms following the vibration, suggesting that part of the H-reflex suppression during this period was mediated by postsynaptic inhibition of the extensor motoneurons. When activating the flexor afferents electrically to produce conditioning, the soleus H-reflex was also suppressed but only when a short-latency reflex was evoked in the soleus muscle by the conditioning input itself. In mice, a similar short-latency reflex was evoked when optogenetic or afferent activation of GABAergic (GAD2+ ) neurons produced a large enough PAD to evoke orthodromic spikes in the test Ia afferents, causing post-activation depression of subsequent monosynaptic EPSPs. The long duration of this post-activation depression and related H-reflex suppression (seconds) was similar to rate-dependent depression that is also due to post-activation depression. We conclude that extensor H-reflex inhibition by brief flexor afferent conditioning is produced by both post-activation depression of extensor Ia afferents and long-lasting inhibition of extensor motoneurons, rather than from PAD inhibiting Ia afferent terminals. KEY POINTS: Suppression of extensor H-reflexes by flexor afferent conditioning was thought to be mediated by GABAA receptor-mediated primary afferent depolarization (PAD) shunting action potentials in the Ia afferent terminal. In line with recent findings that PAD has a facilitatory role in Ia afferent conduction, we show here that when large enough, PAD can evoke orthodromic spikes that travel to the Ia afferent terminal to evoke EPSPs in the motoneuron. These PAD-evoked spikes also produce post-activation depression of Ia afferent terminals and may mediate the short- and long-lasting suppression of extensor H-reflexes in response to flexor afferent conditioning. Our findings highlight that we must re-examine how changes in the activation of GABAergic interneurons and PAD following nervous system injury or disease affects the regulation of Ia afferent transmission to spinal neurons and ultimately motor dysfunction in these disorders.


Assuntos
Reflexo H , Receptores de GABA-A , Animais , Camundongos , Reflexo H/fisiologia , Neurônios Aferentes/fisiologia , Neurônios Motores/fisiologia , Músculo Esquelético , Estimulação Elétrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA