Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Cells ; 29(3): 207-216, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38163647

RESUMO

α-Synuclein (α-Syn)-positive intracellular fibrillar protein deposits, known as Lewy bodies, are thought to be involved in the pathogenesis of Parkinson's disease (PD). Although recent lines of evidence suggested that extracellular α-Syn secreted from pathogenic neurons contributes to the propagation of PD pathology, the precise mechanism of action remains unclear. We have reported that extracellular α-Syn caused sphingosine 1-phosphate (S1P) receptor type 1 (S1PR1) uncoupled from Gi and inhibited downstream G-protein signaling in SH-SY5Y cells, although its patho/physiological role remains to be clarified. Here we show that extracellular α-Syn caused S1P receptor type 3 (S1PR3) uncoupled from G protein in HeLa cells. Further studies indicated that α-Syn treatment reduced cathepsin D activity while enhancing the secretion of immature pro-cathepsin D into cell culture medium, suggesting that lysosomal delivery of cathepsin D was disturbed. Actually, extracellular α-Syn attenuated the retrograde trafficking of insulin-like growth factor-II/mannose 6-phosphate (IGF-II/M6P) receptor, which is under the regulation of S1PR3. These findings shed light on the understanding of dissemination of the PD pathology, that is, the mechanism underlying how extracellular α-Syn secreted from pathogenic cells causes lysosomal dysfunction of the neighboring healthy cells, leading to propagation of the disease.


Assuntos
Neuroblastoma , Doença de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Catepsina D/metabolismo , Células HeLa , Lisossomos/metabolismo , Neuroblastoma/metabolismo , Doença de Parkinson/patologia , Receptores de Esfingosina-1-Fosfato/metabolismo
2.
J Biol Chem ; 293(1): 245-253, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29133526

RESUMO

Exosomes play a critical role in cell-to-cell communication by delivering cargo molecules to recipient cells. However, the mechanism underlying the generation of the exosomal multivesicular endosome (MVE) is one of the mysteries in the field of endosome research. Although sphingolipid metabolites such as ceramide and sphingosine 1-phosphate (S1P) are known to play important roles in MVE formation and maturation, the detailed molecular mechanisms are still unclear. Here, we show that Rho family GTPases, including Cdc42 and Rac1, are constitutively activated on exosomal MVEs and are regulated by S1P signaling as measured by fluorescence resonance energy transfer (FRET)-based conformational changes. Moreover, we detected S1P signaling-induced filamentous actin (F-actin) formation. A selective inhibitor of Gßγ subunits, M119, strongly inhibited both F-actin formation on MVEs and cargo sorting into exosomal intralumenal vesicles of MVEs, both of which were fully rescued by the simultaneous expression of constitutively active Cdc42 and Rac1. Our results shed light on the mechanism underlying exosomal MVE maturation and inform the understanding of the physiological relevance of continuous activation of the S1P receptor and subsequent downstream G protein signaling to Gßγ subunits/Rho family GTPases-regulated F-actin formation on MVEs for cargo sorting into exosomal intralumenal vesicles.


Assuntos
Actinas/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Citoesqueleto de Actina/metabolismo , Movimento Celular/fisiologia , Endossomos/metabolismo , Exossomos/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Células HeLa , Humanos , Lisofosfolipídeos/metabolismo , Corpos Multivesiculares/metabolismo , Transporte Proteico , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
3.
J Biol Chem ; 293(21): 8208-8216, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29632069

RESUMO

α-Synuclein (α-Syn)-positive intracytoplasmic inclusions, known as Lewy bodies, are thought to be involved in the pathogenesis of Lewy body diseases, such as Parkinson's disease (PD). Although growing evidence suggests that cell-to-cell transmission of α-Syn is associated with the progression of PD and that extracellular α-Syn promotes formation of inclusion bodies, its precise mechanism of action in the extracellular space remains unclear. Here, as indicated by both conventional fractionation techniques and FRET-based protein-protein interaction analysis, we demonstrate that extracellular α-Syn causes expulsion of sphingosine 1-phosphate receptor subtype 1 (S1P1R) from the lipid raft fractions. S1P1R regulates vesicular trafficking, and its expulsion involved α-Syn binding to membrane-surface gangliosides. Consequently, the S1P1R became refractory to S1P stimulation required for activating inhibitory G-protein (Gi) in the plasma membranes. Moreover, the extracellular α-Syn also induced uncoupling of the S1P1R on internal vesicles, resulting in the reduced amount of CD63 molecule (CD63) in the lumen of multivesicular endosomes, together with a decrease in CD63 in the released exosomes from α-Syn-treated cells. Furthermore, cholesterol-depleting agent-induced S1P1R expulsion from the rafts also resulted in S1P1R uncoupling. Taken together, these results suggest that extracellular α-Syn-induced expulsion of S1P1R from lipid rafts promotes the uncoupling of S1P1R from Gi, thereby blocking subsequent Gi signals, such as inhibition of cargo sorting into exosomal vesicles in multivesicular endosomes. These findings help shed additional light on PD pathogenesis.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Microdomínios da Membrana/metabolismo , Corpos Multivesiculares/metabolismo , Neuroblastoma/patologia , Receptores de Lisoesfingolipídeo/metabolismo , alfa-Sinucleína/metabolismo , Movimento Celular , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Transporte Proteico , Receptores de Lisoesfingolipídeo/genética , Transdução de Sinais , Células Tumorais Cultivadas , alfa-Sinucleína/genética
4.
Kobe J Med Sci ; 66(3): E94-E101, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33431782

RESUMO

Macropinocytosis is a highly conserved cellular process of endocytosis by which extracellular fluid and nutrients are taken up into cells through large, heterogeneous vesicles known as macropinosomes. Growth factors such as epidermal growth factor (EGF) can induce macropinocytosis in many types of cells, although precise mechanism underlying EGF-induced macropinocytosis remains unclear. In the present studies we have shown the involvement of S1P signaling in EGF-induced macropinocytosis in COS7 cells. First, EGF-induced macropinocytosis was strongly impaired in sphingosine kinase isozymes, SphK1 or SphK2-depleted cells, which was completely rescued by the expression of the corresponding wild-type isozyme but not the catalytically inactive one, suggesting the involvement of sphingosine 1-phosphate (S1P) in this phenomenon. Next, we observed that EGF-induced macropinocytosis was strongly inhibited in S1P type 1 receptor (S1P1R)-knockdown cells, implying involvement of S1P1R in this event. Furthermore, we could successfully demonstrate EGF-induced trans-activation of S1P1R using one-molecular fluorescence resonance energy transfer (FRET) technique. Moreover, for EGF-induced Rac1 activation, a step essential to F-actin formation and subsequent macropinocytosis, S1P signaling is required for its full activation, as judged by FRET analysis. These findings indicate that growth factors such as EGF utilize receptor-mediated S1P signaling for the regulation of macropinocytosis to fulfil vital cell activity.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Lisofosfolipídeos/metabolismo , Pinocitose/fisiologia , Receptores de Esfingosina-1-Fosfato/metabolismo , Esfingosina/análogos & derivados , Animais , Células COS , Chlorocebus aethiops , Transferência Ressonante de Energia de Fluorescência , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Esfingosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA