Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(6): 2240-2257, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38482712

RESUMO

Plants have evolved multiple regulatory mechanisms to cope with natural light fluctuations. The interplay between these mechanisms leads presumably to the resilience of plants in diverse light patterns. We investigated the energy-dependent nonphotochemical quenching (qE) and cyclic electron transports (CET) in light that oscillated with a 60-s period with three different amplitudes. The photosystem I (PSI) and photosystem II (PSII) function-related quantum yields and redox changes of plastocyanin and ferredoxin were measured in Arabidopsis thaliana wild types and mutants with partial defects in qE or CET. The decrease in quantum yield of qE due to the lack of either PsbS- or violaxanthin de-epoxidase was compensated by an increase in the quantum yield of the constitutive nonphotochemical quenching. The mutant lacking NAD(P)H dehydrogenase (NDH)-like-dependent CET had a transient significant PSI acceptor side limitation during the light rising phase under high amplitude of light oscillations. The mutant lacking PGR5/PGRL1-CET restricted electron flows and failed to induce effective photosynthesis control, regardless of oscillation amplitudes. This suggests that PGR5/PGRL1-CET is important for the regulation of PSI function in various amplitudes of light oscillation, while NDH-like-CET acts' as a safety valve under fluctuating light with high amplitude. The results also bespeak interplays among multiple photosynthetic regulatory mechanisms.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Luz , Proteínas de Membrana , Fotossíntese , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema II , Fotossíntese/fisiologia , Fotossíntese/efeitos da radiação , Arabidopsis/fisiologia , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Arabidopsis/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Transporte de Elétrons , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ferredoxinas/metabolismo , Mutação , Oxirredução , Plastocianina/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/genética
2.
J Exp Bot ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700102

RESUMO

Optimizing photosynthesis is considered an important strategy for improving crop yields to ensure food security. To evaluate the potential of using photosynthesis-related parameters in crop breeding programs, we measured chlorophyll fluorescence along with growth-related and morphological traits of 23 barley inbreds across different developmental stages in field conditions. The photosynthesis-related parameters were highly variable, changing with light intensity and developmental progression of plants. Yet, the variations in photosystem II (PSII) quantum yield observed among the inbreds in the field largely reflected the variations in CO2 assimilation properties in controlled climate chamber conditions, confirming that the chlorophyll fluorescence-based technique can provide proxy parameters of photosynthesis to explore genetic variations under field conditions. Heritability (H2) of the photosynthesis-related parameters in the field ranged from 0.16 for the quantum yield of non-photochemical quenching to 0.78 for the fraction of open PSII center. Two parameters, the maximum PSII efficiency in light-adapted state (H2 0.58) and the total non-photochemical quenching (H2 0.53), showed significant positive and negative correlations, respectively, with yield-related traits (dry weight per plant and net straw weight) in the barley inbreds. These results indicate the possibility of improving crop yield through optimizing photosynthetic light use efficiency by conventional breeding programs.

3.
New Phytol ; 239(5): 1869-1886, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37429324

RESUMO

In natural environments, plants are exposed to rapidly changing light. Maintaining photosynthetic efficiency while avoiding photodamage requires equally rapid regulation of photoprotective mechanisms. We asked what the operation frequency range of regulation is in which plants can efficiently respond to varying light. Chlorophyll fluorescence, P700, plastocyanin, and ferredoxin responses of wild-types Arabidopsis thaliana were measured in oscillating light of various frequencies. We also investigated the npq1 mutant lacking violaxanthin de-epoxidase, the npq4 mutant lacking PsbS protein, and the mutants crr2-2, and pgrl1ab impaired in different pathways of the cyclic electron transport. The fastest was the PsbS-regulation responding to oscillation periods longer than 10 s. Processes involving violaxanthin de-epoxidase dampened changes in chlorophyll fluorescence in oscillation periods of 2 min or longer. Knocking out the PGR5/PGRL1 pathway strongly reduced variations of all monitored parameters, probably due to congestion in the electron transport. Incapacitating the NDH-like pathway only slightly changed the photosynthetic dynamics. Our observations are consistent with the hypothesis that nonphotochemical quenching in slow light oscillations involves violaxanthin de-epoxidase to produce, presumably, a largely stationary level of zeaxanthin. We interpret the observed dynamics of photosystem I components as being formed in slow light oscillations partially by thylakoid remodeling that modulates the redox rates.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Complexo de Proteínas do Centro de Reação Fotossintética , Transporte de Elétrons , Complexo de Proteína do Fotossistema II/metabolismo , Luz , Fotossíntese/fisiologia , Arabidopsis/metabolismo , Clorofila/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Mutação/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Proteínas de Membrana/metabolismo
4.
Plant Physiol ; 188(1): 301-317, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34662428

RESUMO

Photosynthesis acclimates quickly to the fluctuating environment in order to optimize the absorption of sunlight energy, specifically the photosynthetic photon fluence rate (PPFR), to fuel plant growth. The conversion efficiency of intercepted PPFR to photochemical energy (ɛe) and to biomass (ɛc) are critical parameters to describe plant productivity over time. However, they mask the link of instantaneous photochemical energy uptake under specific conditions, that is, the operating efficiency of photosystem II (Fq'/Fm'), and biomass accumulation. Therefore, the identification of energy- and thus resource-efficient genotypes under changing environmental conditions is impeded. We long-term monitored Fq'/Fm' at the canopy level for 21 soybean (Glycine max (L.) Merr.) and maize (Zea mays) genotypes under greenhouse and field conditions using automated chlorophyll fluorescence and spectral scans. Fq'/Fm' derived under incident sunlight during the entire growing season was modeled based on genotypic interactions with different environmental variables. This allowed us to cumulate the photochemical energy uptake and thus estimate ɛe noninvasively. ɛe ranged from 48% to 62%, depending on the genotype, and up to 9% of photochemical energy was transduced into biomass in the most efficient C4 maize genotype. Most strikingly, ɛe correlated with shoot biomass in seven independent experiments under varying conditions with up to r = 0.68. Thus, we estimated biomass production by integrating photosynthetic response to environmental stresses over the growing season and identified energy-efficient genotypes. This has great potential to improve crop growth models and to estimate the productivity of breeding lines or whole ecosystems at any time point using autonomous measuring systems.


Assuntos
Biomassa , Glycine max/crescimento & desenvolvimento , Glycine max/genética , Fotossíntese/genética , Fotossíntese/fisiologia , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Adaptação Ocular/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Variação Genética , Genótipo
5.
New Phytol ; 229(4): 2104-2119, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33020945

RESUMO

Solar-induced fluorescence (SIF) is highly relevant in mapping photosynthesis from remote-sensing platforms. This requires linking SIF to photosynthesis and understanding the role of nonphotochemical quenching (NPQ) mechanisms under field conditions. Hence, active and passive fluorescence were measured in Arabidopsis with altered NPQ in outdoor conditions. Plants with mutations in either violaxanthin de-epoxidase (npq1) or PsbS protein (npq4) exhibited reduced NPQ capacity. Parallel measurements of NPQ, photosystem II efficiency, SIF and spectral reflectance (ρ) were conducted diurnally on one sunny summer day and two consecutive days during a simulated cold spell. Results showed that both npq mutants exhibited higher levels of SIF compared to wild-type plants. Changes in reflectance were related to changes in the violaxanthin-antheraxanthin-zeaxanthin cycle and not to PsbS-mediated conformational changes. When plants were exposed to cold temperatures, rapid onset of photoinhibition strongly quenched SIF in all lines. Using well-characterized Arabidopsis npq mutants, we showed for the first time the quantitative link between SIF, photosynthetic efficiency, NPQ components and leaf reflectance. We discuss the functional potential and limitations of SIF and reflectance measurements for estimating photosynthetic efficiency and NPQ in the field.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Clorofila , Fluorescência , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo
6.
Plant Physiol ; 179(4): 1632-1657, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718349

RESUMO

Natural light environments are highly variable. Flexible adjustment between light energy utilization and photoprotection is therefore of vital importance for plant performance and fitness in the field. Short-term reactions to changing light intensity are triggered inside chloroplasts and leaves within seconds to minutes, whereas long-term adjustments proceed over hours and days, integrating multiple signals. While the mechanisms of long-term acclimation to light intensity have been studied by changing constant growth light intensity during the day, responses to fluctuating growth light intensity have rarely been inspected in detail. We performed transcriptome profiling in Arabidopsis (Arabidopsis thaliana) leaves to investigate long-term gene expression responses to fluctuating light (FL). In particular, we examined whether responses differ between young and mature leaves or between morning and the end of the day. Our results highlight global reprogramming of gene expression under FL, including that of genes related to photoprotection, photosynthesis, and photorespiration and to pigment, prenylquinone, and vitamin metabolism. The FL-induced changes in gene expression varied between young and mature leaves at the same time point and between the same leaves in the morning and at the end of the day, indicating interactions of FL acclimation with leaf development stage and time of day. Only 46 genes were up- or down-regulated in both young and mature leaves at both time points. Combined analyses of gene coexpression and cis-elements pointed to a role of the circadian clock and light in coordinating the acclimatory responses of functionally related genes. Our results also suggest a possible cross talk between FL acclimation and systemic acquired resistance-like gene expression in young leaves.


Assuntos
Arabidopsis/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Aclimatação/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Perfilação da Expressão Gênica , Estresse Oxidativo/genética , Estresse Oxidativo/efeitos da radiação , Fotossíntese/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Luz Solar , Fatores de Tempo
7.
Plant Cell Environ ; 43(7): 1637-1654, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32167577

RESUMO

Passive measurement of sun-induced chlorophyll fluorescence (F) represents the most promising tool to quantify changes in photosynthetic functioning on a large scale. However, the complex relationship between this signal and other photosynthesis-related processes restricts its interpretation under stress conditions. To address this issue, we conducted a field campaign by combining daily airborne and ground-based measurements of F (normalized to photosynthetically active radiation), reflectance and surface temperature and related the observed changes to stress-induced variations in photosynthesis. A lawn carpet was sprayed with different doses of the herbicide Dicuran. Canopy-level measurements of gross primary productivity indicated dosage-dependent inhibition of photosynthesis by the herbicide. Dosage-dependent changes in normalized F were also detected. After spraying, we first observed a rapid increase in normalized F and in the Photochemical Reflectance Index, possibly due to the blockage of electron transport by Dicuran and the resultant impairment of xanthophyll-mediated non-photochemical quenching. This initial increase was followed by a gradual decrease in both signals, which coincided with a decline in pigment-related reflectance indices. In parallel, we also detected a canopy temperature increase after the treatment. These results demonstrate the potential of using F coupled with relevant reflectance indices to estimate stress-induced changes in canopy photosynthesis.


Assuntos
Clorofila/efeitos da radiação , Fotossíntese/efeitos da radiação , Fluorescência , Modelos Biológicos , Plantas/efeitos da radiação , Estresse Fisiológico , Luz Solar
8.
New Phytol ; 223(3): 1073-1105, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30802971

RESUMO

By means of meta-analyses we determined how 70 traits related to plant anatomy, morphology, chemistry, physiology, growth and reproduction are affected by daily light integral (DLI; mol photons m-2  d-1 ). A large database including 500 experiments with 760 plant species enabled us to determine generalized dose-response curves. Many traits increase with DLI in a saturating fashion. Some showed a more than 10-fold increase over the DLI range of 1-50 mol m-2  d-1 , such as the number of seeds produced per plant and the actual rate of photosynthesis. Strong decreases with DLI (up to three-fold) were observed for leaf area ratio and leaf payback time. Plasticity differences among species groups were generally small compared with the overall responses to DLI. However, for a number of traits, including photosynthetic capacity and realized growth, we found woody and shade-tolerant species to have lower plasticity. We further conclude that the direction and degree of trait changes adheres with responses to plant density and to vertical light gradients within plant canopies. This synthesis provides a strong quantitative basis for understanding plant acclimation to light, from molecular to whole plant responses, but also identifies the variables that currently form weak spots in our knowledge, such as respiration and reproductive characteristics.


Assuntos
Luz , Plantas/efeitos da radiação , Característica Quantitativa Herdável , Adaptação Fisiológica , Relação Dose-Resposta à Radiação , Desenvolvimento Vegetal/efeitos da radiação , Plantas/genética
9.
Plant Physiol ; 176(3): 2351-2364, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29374108

RESUMO

The thylakoid membrane system of higher plant chloroplasts consists of interconnected subdomains of appressed and nonappressed membrane bilayers, known as grana and stroma lamellae, respectively. CURVATURE THYLAKOID1 (CURT1) protein complexes mediate the shape of grana stacks in a dosage-dependent manner and facilitate membrane curvature at the grana margins, the interface between grana and stroma lamellae. Although grana stacks are highly conserved among land plants, the functional relevance of grana stacking remains unclear. Here, we show that inhibiting CURT1-mediated alteration of thylakoid ultrastructure in Arabidopsis (Arabidopsis thaliana) reduces photosynthetic efficiency and plant fitness under adverse, controlled, and natural light conditions. Plants that lack CURT1 show less adjustment of grana diameter, which compromises regulatory mechanisms like the photosystem II repair cycle and state transitions. Interestingly, CURT1A suffices to induce thylakoid membrane curvature in planta and thylakoid hyperbending in plants overexpressing CURT1A. We suggest that CURT1 oligomerization is regulated at the posttranslational level in a light-dependent fashion and that CURT1-mediated thylakoid plasticity plays an important role in fine-tuning photosynthesis and plant fitness during challenging growth conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Cloroplastos/metabolismo , Proteínas de Membrana/metabolismo , Fotossíntese/fisiologia , Tilacoides/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Proteínas de Cloroplastos/genética , Luz , Proteínas de Membrana/genética , Mutação , Processamento de Proteína Pós-Traducional , Sementes/fisiologia
10.
Photosynth Res ; 140(2): 221-233, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30357678

RESUMO

Photosynthetic phenotyping requires quick characterization of dynamic traits when measuring large plant numbers in a fluctuating environment. Here, we evaluated the light-induced fluorescence transient (LIFT) method for its capacity to yield rapidly fluorometric parameters from 0.6 m distance. The close approximation of LIFT to conventional chlorophyll fluorescence (ChlF) parameters is shown under controlled conditions in spinach leaves and isolated thylakoids when electron transport was impaired by anoxic conditions or chemical inhibitors. The ChlF rise from minimum fluorescence (Fo) to maximum fluorescence induced by fast repetition rate (Fm-FRR) flashes was dominated by reduction of the primary electron acceptor in photosystem II (QA). The subsequent reoxidation of QA- was quantified using the relaxation of ChlF in 0.65 ms (Fr1) and 120 ms (Fr2) phases. Reoxidation efficiency of QA- (Fr1/Fv, where Fv = Fm-FRR - Fo) decreased when electron transport was impaired, while quantum efficiency of photosystem II (Fv/Fm) showed often no significant effect. ChlF relaxations of the LIFT were similar to an independent other method. Under increasing light intensities, Fr2'/Fq' (where Fr2' and Fq' represent Fr2 and Fv in the light-adapted state, respectively) was hardly affected, whereas the operating efficiency of photosystem II (Fq'/Fm') decreased due to non-photochemical quenching. Fm-FRR was significantly lower than the ChlF maximum induced by multiple turnover (Fm-MT) flashes. However, the resulting Fv/Fm and Fq'/Fm' from both flashes were highly correlated. The LIFT method complements Fv/Fm with information about efficiency of electron transport. Measurements in situ and from a distance facilitate application in high-throughput and automated phenotyping.


Assuntos
Transporte de Elétrons , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Spinacia oleracea/fisiologia , Fluorescência , Cinética , Luz , Folhas de Planta/metabolismo , Spinacia oleracea/efeitos da radiação , Tilacoides/metabolismo
11.
Physiol Plant ; 162(4): 506-517, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29125181

RESUMO

Plants in natural environments are often exposed to fluctuations in light intensity, and leaf-level acclimation to light may be affected by those fluctuations. Concurrently, leaves acclimated to a given light climate can become progressively shaded as new leaves emerge and grow above them. Acclimation to shade alters characteristics such as photosynthetic capacity. To investigate the interaction of fluctuating light and progressive shading, we exposed three-week old tomato (Solanum lycopersicum) plants to either lightflecks or constant light intensities. Lightflecks of 20 s length and 1000 µmol m-2 s-1 peak intensity were applied every 5 min for 16 h per day, for 3 weeks. Lightfleck and constant light treatments received identical daily light sums (15.2 mol m-2 day-1 ). Photosynthesis was monitored in leaves 2 and 4 (counting from the bottom) during canopy development throughout the experiment. Several dynamic and steady-state characteristics of photosynthesis became enhanced by fluctuating light when leaves were partially shaded by the upper canopy, but much less so when they were fully exposed to lightflecks. This was the case for CO2 -saturated photosynthesis rates in leaves 2 and 4 growing under lightflecks 14 days into the treatment period. Also, leaf 2 of plants in the lightfleck treatment showed significantly faster rates of photosynthetic induction when exposed to a stepwise change in light intensity on day 15. As the plants grew larger and these leaves became increasingly shaded, acclimation of leaf-level photosynthesis to lightflecks disappeared. These results highlight continuous acclimation of leaf photosynthesis to changing light conditions inside developing canopies.


Assuntos
Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiologia , Luz
12.
Sensors (Basel) ; 18(2)2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29393921

RESUMO

Hyperspectral imaging sensors are promising tools for monitoring crop plants or vegetation in different environments. Information on physiology, architecture or biochemistry of plants can be assessed non-invasively and on different scales. For instance, hyperspectral sensors are implemented for stress detection in plant phenotyping processes or in precision agriculture. Up to date, a variety of non-imaging and imaging hyperspectral sensors is available. The measuring process and the handling of most of these sensors is rather complex. Thus, during the last years the demand for sensors with easy user operability arose. The present study introduces the novel hyperspectral camera Specim IQ from Specim (Oulu, Finland). The Specim IQ is a handheld push broom system with integrated operating system and controls. Basic data handling and data analysis processes, such as pre-processing and classification routines are implemented within the camera software. This study provides an introduction into the measurement pipeline of the Specim IQ as well as a radiometric performance comparison with a well-established hyperspectral imager. Case studies for the detection of powdery mildew on barley at the canopy scale and the spectral characterization of Arabidopsis thaliana mutants grown under stressed and non-stressed conditions are presented.


Assuntos
Doenças das Plantas , Ascomicetos , Finlândia , Hordeum , Fenótipo , Software
13.
Plant Physiol ; 168(4): 1550-62, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26134165

RESUMO

Attaining defined steady-state carotenoid levels requires balancing of the rates governing their synthesis and metabolism. Phytoene formation mediated by phytoene synthase (PSY) is rate limiting in the biosynthesis of carotenoids, whereas carotenoid catabolism involves a multitude of nonenzymatic and enzymatic processes. We investigated carotenoid and apocarotenoid formation in Arabidopsis (Arabidopsis thaliana) in response to enhanced pathway flux upon PSY overexpression. This resulted in a dramatic accumulation of mainly ß-carotene in roots and nongreen calli, whereas carotenoids remained unchanged in leaves. We show that, in chloroplasts, surplus PSY was partially soluble, localized in the stroma and, therefore, inactive, whereas the membrane-bound portion mediated a doubling of phytoene synthesis rates. Increased pathway flux was not compensated by enhanced generation of long-chain apocarotenals but resulted in higher levels of C13 apocarotenoid glycosides (AGs). Using mutant lines deficient in carotenoid cleavage dioxygenases (CCDs), we identified CCD4 as being mainly responsible for the majority of AGs formed. Moreover, changed AG patterns in the carotene hydroxylase mutants lutein deficient1 (lut1) and lut5 exhibiting altered leaf carotenoids allowed us to define specific xanthophyll species as precursors for the apocarotenoid aglycons detected. In contrast to leaves, carotenoid hyperaccumulating roots contained higher levels of ß-carotene-derived apocarotenals, whereas AGs were absent. These contrasting responses are associated with tissue-specific capacities to synthesize xanthophylls, which thus determine the modes of carotenoid accumulation and apocarotenoid formation.


Assuntos
Arabidopsis/metabolismo , Carotenoides/metabolismo , Homeostase , Folhas de Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carotenoides/biossíntese , Cloroplastos/genética , Cloroplastos/metabolismo , Cromatografia Líquida , Dioxigenases/genética , Dioxigenases/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Glicosídeos/metabolismo , Glicosilação , Immunoblotting , Espectrometria de Massas , Mutação , Folhas de Planta/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Xantofilas/metabolismo , beta Caroteno/metabolismo
14.
J Phycol ; 50(3): 515-25, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26988324

RESUMO

Circadian clocks synchronize various physiological, metabolic and developmental processes of organisms with specific phases of recurring changes in their environment (e.g. day and night or seasons). Here, we investigated whether the circadian clock plays a role in regulation of growth and chlorophyll (Chl) accumulation in Nannochloropsis gaditana, an oleaginous marine microalga which is considered as a potential feedstock for biofuels and for which a draft genome sequence has been published. Optical density (OD) of N. gaditana culture was monitored at 680 and 735 nm under 12:12 h or 18:6 h light-dark (LD) cycles and after switching to continuous illumination in photobioreactors. In parallel, Chl fluorescence was measured to assess the quantum yield of photosystem II. Furthermore, to test if red- or blue-light photoreceptors are involved in clock entrainment in N. gaditana, some of the experiments were conducted by using only red or blue light. Growth and Chl accumulation were confined to light periods in the LD cycles, increasing more strongly in the first half than in the second half of the light periods. After switching to continuous light, rhythmic oscillations continued (especially for OD680 ) at least in the first 24 h, with a 50% decrease in the capacity to grow and accumulate Chl during the first subjective night. Pronounced free-running oscillations were induced by blue light, but not by red light. In contrast, the photosystem II quantum yield was determined by light conditions. The results indicate interactions between circadian and light regulation of growth and Chl accumulation in N. gaditana.

15.
Plant J ; 72(1): 154-61, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22694320

RESUMO

Circadian clocks synchronized with the environment allow plants to anticipate recurring daily changes and give a fitness advantage. Here, we mapped the dynamic growth phenotype of leaves and roots in two lines of Arabidopsis thaliana with a disrupted circadian clock: the CCA1 over-expressing line (CCA1ox) and the prr9 prr7 prr5 (prr975) mutant. We demonstrate leaf growth defects due to a disrupted circadian clock over a 24 h time scale. Both lines showed enhanced leaf growth compared with the wild-type during the diurnal period, suggesting increased partitioning of photosynthates for leaf growth. Nocturnal leaf growth was reduced and growth inhibition occurred by dawn, which may be explained by ineffective starch degradation in the leaves of the mutants. However, this growth inhibition was not caused by starch exhaustion. Overall, these results are consistent with the notion that the defective clock affects carbon and energy allocation, thereby reducing growth capacity during the night. Furthermore, rosette morphology and size as well as root architecture were strikingly altered by the defective clock control. Separate analysis of the primary root and lateral roots revealed strong suppression of lateral root formation in both CCA1ox and prr975, accompanied by unusual changes in lateral root growth direction under light-dark cycles and increased lateral extension of the root system. We conclude that growth of the whole plant is severely affected by improper clock regulation in A. thaliana, resulting not only in altered timing and capacity for growth but also aberrant development of shoot and root architecture.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Mutação , Fenótipo , Fotoperíodo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Brotos de Planta/anatomia & histologia , Brotos de Planta/genética , Brotos de Planta/fisiologia , Amido/análise , Amido/metabolismo , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Plant Cell Environ ; 36(2): 438-53, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22860767

RESUMO

Functions of α- and ß-branch carotenoids in whole-plant acclimation to photo-oxidative stress were studied in Arabidopsis thaliana wild-type (wt) and carotenoid mutants, lutein deficient (lut2, lut5), non-photochemical quenching1 (npq1) and suppressor of zeaxanthin-less1 (szl1) npq1 double mutant. Photo-oxidative stress was applied by exposing plants to sunflecks. The sunflecks caused reduction of chlorophyll content in all plants, but more severely in those having high α- to ß-branch carotenoid composition (α/ß-ratio) (lut5, szl1npq1). While this did not alter carotenoid composition in wt or lut2, which accumulates only ß-branch carotenoids, increased xanthophyll levels were found in the mutants with high α/ß-ratios (lut5, szl1npq1) or without xanthophyll-cycle operation (npq1, szl1npq1). The PsbS protein content increased in all sunfleck plants but lut2. These changes were accompanied by no change (npq1, szl1npq1) or enhanced capacity (wt, lut5) of NPQ. Leaf mass per area increased in lut2, but decreased in wt and lut5 that showed increased NPQ. The sunflecks decelerated primary root growth in wt and npq1 having normal α/ß-ratios, but suppressed lateral root formation in lut5 and szl1npq1 having high α/ß-ratios. The results highlight the importance of proper regulation of the α- and ß-branch carotenoid pathways for whole-plant acclimation, not only leaf photoprotection, under photo-oxidative stress.


Assuntos
Aclimatação/efeitos da radiação , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Carotenoides/biossíntese , Carotenoides/química , Luz , Estresse Oxidativo/efeitos da radiação , Adaptação Fisiológica/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas/efeitos da radiação , Clorofila/metabolismo , Escuridão , Complexos de Proteínas Captadores de Luz/metabolismo , Mutação/genética , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos da radiação , Sementes/crescimento & desenvolvimento , Sementes/efeitos da radiação
17.
J Exp Bot ; 69(20): 4651-4654, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30307518
18.
Photosynth Res ; 113(1-3): 221-37, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22729524

RESUMO

Acclimation to fluctuating light environment with short (lasting 20 s, at 650 or 1,250 µmol photons m(-2) s(-1), every 6 or 12 min) or long (for 40 min at 650 µmol photons m(-2) s(-1), once a day at midday) sunflecks was studied in Arabidopsis thaliana. The sunfleck treatments were applied in the background daytime light intensity of 50 µmol photons m(-2) s(-1). In order to distinguish the effects of sunflecks from those of increased daily irradiance, constant light treatments at 85 and 120 µmol photons m(-2) s(-1), which gave the same photosynthetically active radiation (PAR) per day as the different sunfleck treatments, were also included in the experiments. The increased daily total PAR in the two higher constant light treatments enhanced photosystem II electron transport and starch accumulation in mature leaves and promoted expansion of young leaves in Columbia-0 plants during the 7-day treatments. Compared to the plants remaining under 50 µmol photons m(-2) s(-1), application of long sunflecks caused upregulation of electron transport without affecting carbon gain in the form of starch accumulation and leaf growth or the capacity of non-photochemical quenching (NPQ). Mature leaves showed marked enhancement of the NPQ capacity under the conditions with short sunflecks, which preceded recovery and upregulation of electron transport, demonstrating the initial priority of photoprotection. The distinct acclimatory responses to constant PAR, long sunflecks, and different combinations of short sunflecks are consistent with acclimatory adjustment of the processes in photoprotection and carbon gain, depending on the duration, frequency, and intensity of light fluctuations. While the responses of leaf expansion to short sunflecks differed among the seven Arabidopsis accessions examined, all plants showed NPQ upregulation, suggesting limited ability of this species to utilize short sunflecks. The increase in the NPQ capacity was accompanied by reduced chlorophyll contents, higher levels of the xanthophyll-cycle pigments, faster light-induced de-epoxidation of violaxanthin to zeaxanthin and antheraxanthin, increased amounts of PsbS protein, as well as enhanced activity of superoxide dismutase. These acclimatory mechanisms, involving reorganization of pigment-protein complexes and upregulation of other photoprotective reactions, are probably essential for Arabidopsis plants to cope with photo-oxidative stress induced by short sunflecks without suffering from severe photoinhibition and lipid peroxidation.


Assuntos
Aclimatação/efeitos da radiação , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Ecótipo , Luz Solar , Análise de Variância , Arabidopsis/enzimologia , Metabolismo dos Carboidratos/efeitos da radiação , Transporte de Elétrons/efeitos da radiação , Immunoblotting , Processos Fotoquímicos/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Pigmentos Biológicos/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Solubilidade , Superóxido Dismutase/metabolismo
19.
Photosynth Res ; 113(1-3): 273-85, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22466529

RESUMO

High solar radiation in the tropics is known to cause transient reduction in photosystem II (PSII) efficiency and CO(2) assimilation in sun-exposed leaves, but little is known how these responses affect the actual growth performance of tropical plants. The present study addresses this question. Seedlings of five woody neotropical forest species were cultivated under full sunlight and shaded conditions. In full sunlight, strong photoinhibition of PSII at midday was documented for the late-successional tree species Ormosia macrocalyx and Tetragastris panamensis and the understory/forest gap species, Piper reticulatum. In leaves of O. macrocalyx, PSII inhibition was accompanied by substantial midday depression of net CO(2) assimilation. Leaves of all species had increased pools of violaxanthin-cycle pigments. Other features of photoacclimation, such as increased Chl a/b ratio and contents of lutein, ß-carotene and tocopherol varied. High light caused strong increase of tocopherol in leaves of T. panamensis and another late-successional species, Virola surinamensis. O. macrocalyx had low contents of tocopherol and UV-absorbing substances. Under full sunlight, biomass accumulation was not reduced in seedlings of T. panamensis, P. reticulatum, and V. surinamensis, but O. macrocalyx exhibited substantial growth inhibition. In the highly shade-tolerant understory species Psychotria marginata, full sunlight caused strongly reduced growth of most individuals. However, some plants showed relatively high growth rates under full sun approaching those of seedlings at 40 % ambient irradiance. It is concluded that shade-tolerant tropical tree seedlings can achieve efficient photoacclimation and high growth rates in full sunlight.


Assuntos
Adaptação Fisiológica/efeitos da radiação , Fotossíntese/efeitos da radiação , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , Luz Solar , Árvores/crescimento & desenvolvimento , Árvores/efeitos da radiação , Absorção/efeitos da radiação , Dióxido de Carbono/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Tocoferóis/metabolismo , Clima Tropical , Raios Ultravioleta
20.
J Exp Bot ; 63(9): 3339-51, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22223810

RESUMO

Plants are sessile organisms forced to adjust to their surrounding environment. In a single plant the photoautotrophic shoot is exposed to pronounced environmental variations recurring in a day-night 24 h (diel) cycle, whereas the heterotrophic root grows in a temporally less fluctuating environment. The contrasting habitats of shoots and roots are reflected in different diel growth patterns and their responsiveness to environmental stimuli. Differences between diel leaf growth patterns of mono- and dicotyledonous plants correspond to their different organization and placement of growth zones. In monocots, heterotrophic growth zones are organized linearly and protected from the environment by sheaths of older leaves. In contrast, photosynthetically active growth zones of dicot leaves are exposed directly to the environment and show characteristic, species-specific diel growth patterns. It is hypothesized that the different exposure to environmental constraints and simultaneously the sink/source status of the growing organs may have induced distinct endogenous control of diel growth patterns in roots and leaves of monocot and dicot plants. Confronted by strong temporal fluctuations in environment, the circadian clock may facilitate robust intrinsic control of leaf growth in dicot plants.


Assuntos
Ritmo Circadiano/fisiologia , Meio Ambiente , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Magnoliopsida/crescimento & desenvolvimento , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA