Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(29): e2214320120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428918

RESUMO

Integrating antigen-encoding mRNA (Messenger RNA) and immunostimulatory adjuvant into a single formulation is a promising approach to potentiating the efficacy of mRNA vaccines. Here, we developed a scheme based on RNA engineering to integrate adjuvancy directly into antigen-encoding mRNA strands without hampering the ability to express antigen proteins. Short double-stranded RNA (dsRNA) was designed to target retinoic acid-inducible gene-I (RIG-I), an innate immune receptor, for effective cancer vaccination and then tethered onto the mRNA strand via hybridization. Tuning the dsRNA structure and microenvironment by changing its length and sequence enabled the determination of the structure of dsRNA-tethered mRNA efficiently stimulating RIG-I. Eventually, the formulation loaded with dsRNA-tethered mRNA of the optimal structure effectively activated mouse and human dendritic cells and drove them to secrete a broad spectrum of proinflammatory cytokines without increasing the secretion of anti-inflammatory cytokines. Notably, the immunostimulating intensity was tunable by modulating the number of dsRNA along the mRNA strand, which prevents excessive immunostimulation. Versatility in the applicable formulation is a practical advantage of the dsRNA-tethered mRNA. Its formulation with three existing systems, i.e., anionic lipoplex, ionizable lipid-based lipid nanoparticles, and polyplex micelles, induced appreciable cellular immunity in the mice model. Of particular interest, dsRNA-tethered mRNA encoding ovalbumin (OVA) formulated in anionic lipoplex used in clinical trials exerted a significant therapeutic effect in the mouse lymphoma (E.G7-OVA) model. In conclusion, the system developed here provides a simple and robust platform to supply the desired intensity of immunostimulation in various formulations of mRNA cancer vaccines.


Assuntos
Neoplasias , RNA de Cadeia Dupla , Humanos , Animais , Camundongos , RNA de Cadeia Dupla/genética , Adjuvantes Imunológicos/farmacologia , Antígenos , Imunidade Celular , Citocinas/genética , RNA Mensageiro/genética , Camundongos Endogâmicos C57BL , Neoplasias/terapia
2.
Mol Ther ; 32(5): 1266-1283, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569556

RESUMO

Carrier-free naked mRNA vaccines may reduce the reactogenicity associated with delivery carriers; however, their effectiveness against infectious diseases has been suboptimal. To boost efficacy, we targeted the skin layer rich in antigen-presenting cells (APCs) and utilized a jet injector. The jet injection efficiently introduced naked mRNA into skin cells, including APCs in mice. Further analyses indicated that APCs, after taking up antigen mRNA in the skin, migrated to the lymph nodes (LNs) for antigen presentation. Additionally, the jet injection provoked localized lymphocyte infiltration in the skin, serving as a physical adjuvant for vaccination. Without a delivery carrier, our approach confined mRNA distribution to the injection site, preventing systemic mRNA leakage and associated systemic proinflammatory reactions. In mouse vaccination, the naked mRNA jet injection elicited robust antigen-specific antibody production over 6 months, along with germinal center formation in LNs and the induction of both CD4- and CD8-positive T cells. By targeting the SARS-CoV-2 spike protein, this approach provided protection against viral challenge. Furthermore, our approach generated neutralizing antibodies against SARS-CoV-2 in non-human primates at levels comparable to those observed in mice. In conclusion, our approach offers a safe and effective option for mRNA vaccines targeting infectious diseases.


Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de mRNA , Animais , Camundongos , SARS-CoV-2/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinas de mRNA/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Antivirais/imunologia , Feminino , Células Apresentadoras de Antígenos/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Linfócitos T CD8-Positivos/imunologia , Anticorpos Neutralizantes/imunologia , Humanos , Vacinação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA