Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
EMBO J ; 42(12): e112869, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37092320

RESUMO

Translation initiates when the eIF4F complex binds the 5' mRNA cap, followed by 5' untranslated region scanning for the start codon by scanning ribosomes. Here, we demonstrate that the ASC-1 complex (ASCC), which was previously shown to promote the dissociation of colliding 80S ribosomes, associates with scanning ribosomes to regulate translation initiation. Selective translation complex profiling (TCP-seq) analysis revealed that ASCC3, a helicase domain-containing subunit of ASCC, localizes predominantly to the 5' untranslated region of mRNAs. Ribo-seq, TCP-seq, and luciferase reporter analyses showed that ASCC3 knockdown impairs 43S preinitiation complex loading and scanning dynamics, thereby reducing translation efficiency. Whereas eIF4A, an RNA helicase in the eIF4F complex, is important for global translation, ASCC was found to regulate the scanning process for a specific subset of transcripts. Our results have thus revealed that ASCC is required not only for dissociation of colliding 80S ribosomes but also for efficient translation initiation by scanning ribosomes at a subset of transcripts.


Assuntos
Fator de Iniciação 4F em Eucariotos , Ribossomos , Fator de Iniciação 4F em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/metabolismo , Regiões 5' não Traduzidas , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Códon de Iniciação , Biossíntese de Proteínas , Iniciação Traducional da Cadeia Peptídica
2.
Mol Psychiatry ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438524

RESUMO

CHD8 is an ATP-dependent chromatin-remodeling factor encoded by the most frequently mutated gene in individuals with autism spectrum disorder (ASD). Although many studies have examined the consequences of CHD8 haploinsufficiency in cells and mice, few have focused on missense mutations, the most common type of CHD8 alteration in ASD patients. We here characterized CHD8 missense mutations in ASD patients according to six prediction scores and experimentally examined the effects of such mutations on the biochemical activities of CHD8, neural differentiation of embryonic stem cells, and mouse behavior. Only mutations with high prediction scores gave rise to ASD-like phenotypes in mice, suggesting that not all CHD8 missense mutations detected in ASD patients are directly responsible for the development of ASD. Furthermore, we found that mutations with high scores cause ASD by mechanisms either dependent on or independent of loss of chromatin-remodeling function. Our results thus provide insight into the molecular underpinnings of ASD pathogenesis caused by missense mutations of CHD8.

3.
PLoS Genet ; 17(8): e1009686, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34351912

RESUMO

Although long noncoding RNAs (lncRNAs) are transcripts that do not encode proteins by definition, some lncRNAs actually contain small open reading frames that are translated. TINCR (terminal differentiation-induced ncRNA) has been recognized as a lncRNA that contributes to keratinocyte differentiation. However, we here show that TINCR encodes a ubiquitin-like protein that is well conserved among species and whose expression was confirmed by the generation of mice harboring a FLAG epitope tag sequence in the endogenous open reading frame as well as by targeted proteomics. Forced expression of this protein promoted cell cycle progression in normal human epidermal keratinocytes, and mice lacking this protein manifested a delay in skin wound healing associated with attenuated cell cycle progression in keratinocytes. We termed this protein TINCR-encoded ubiquitin-like protein (TUBL), and our results reveal a role for TINCR in the regulation of keratinocyte proliferation and skin regeneration that is dependent on TUBL.


Assuntos
Queratinócitos/citologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Ciclo Celular , Diferenciação Celular , Células Cultivadas , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Queratinócitos/metabolismo , Camundongos , Fases de Leitura Aberta , Proteômica , Ubiquitinas/genética , Ubiquitinas/metabolismo , Cicatrização
4.
Nature ; 541(7636): 228-232, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28024296

RESUMO

Although long non-coding RNAs (lncRNAs) are non-protein-coding transcripts by definition, recent studies have shown that a fraction of putative small open reading frames within lncRNAs are translated. However, the biological significance of these hidden polypeptides is still unclear. Here we identify and functionally characterize a novel polypeptide encoded by the lncRNA LINC00961. This polypeptide is conserved between human and mouse, is localized to the late endosome/lysosome and interacts with the lysosomal v-ATPase to negatively regulate mTORC1 activation. This regulation of mTORC1 is specific to activation of mTORC1 by amino acid stimulation, rather than by growth factors. Hence, we termed this polypeptide 'small regulatory polypeptide of amino acid response' (SPAR). We show that the SPAR-encoding lncRNA is highly expressed in a subset of tissues and use CRISPR/Cas9 engineering to develop a SPAR-polypeptide-specific knockout mouse while maintaining expression of the host lncRNA. We find that the SPAR-encoding lncRNA is downregulated in skeletal muscle upon acute injury, and using this in vivo model we establish that SPAR downregulation enables efficient activation of mTORC1 and promotes muscle regeneration. Our data provide a mechanism by which mTORC1 activation may be finely regulated in a tissue-specific manner in response to injury, and a paradigm by which lncRNAs encoding small polypeptides can modulate general biological pathways and processes to facilitate tissue-specific requirements, consistent with their restricted and highly regulated expression profile.


Assuntos
Complexos Multiproteicos/metabolismo , Músculos/fisiologia , Peptídeos/metabolismo , RNA Longo não Codificante/genética , Regeneração/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Adenosina Trifosfatases/metabolismo , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Animais , Sistemas CRISPR-Cas/genética , Endossomos/metabolismo , Edição de Genes , Células HEK293 , Humanos , Lisossomos/enzimologia , Lisossomos/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/agonistas , Músculos/lesões , Especificidade de Órgãos , Peptídeos/deficiência , Peptídeos/genética , Transdução de Sinais/efeitos dos fármacos
5.
Nucleic Acids Res ; 49(13): 7298-7317, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34226921

RESUMO

Although ribosome-profiling and translation initiation sequencing (TI-seq) analyses have identified many noncanonical initiation codons, the precise detection of translation initiation sites (TISs) remains a challenge, mainly because of experimental artifacts of such analyses. Here, we describe a new method, TISCA (TIS detection by translation Complex Analysis), for the accurate identification of TISs. TISCA proved to be more reliable for TIS detection compared with existing tools, and it identified a substantial number of near-cognate codons in Kozak-like sequence contexts. Analysis of proteomics data revealed the presence of methionine at the NH2-terminus of most proteins derived from near-cognate initiation codons. Although eukaryotic initiation factor 2 (eIF2), eIF2A and eIF2D have previously been shown to contribute to translation initiation at near-cognate codons, we found that most noncanonical initiation events are most probably dependent on eIF2, consistent with the initial amino acid being methionine. Comprehensive identification of TISs by TISCA should facilitate characterization of the mechanism of noncanonical initiation.


Assuntos
Códon de Iniciação , Fator de Iniciação 2 em Eucariotos/metabolismo , Iniciação Traducional da Cadeia Peptídica , Biologia Computacional/métodos , Fator de Iniciação 3 em Eucariotos/metabolismo , Células HEK293 , Humanos , Fases de Leitura Aberta , Pegadas de Proteínas , Proteômica , Análise de Sequência de RNA
6.
Chemistry ; 25(68): 15565-15571, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31529654

RESUMO

Substituted acene derivatives are regarded as promising materials for organic electronic devices such as organic light-emitting diodes (OLEDs). In particular, anthracene derivatives are known to exhibit good fluorescence property, with the air stability and solubility in common organic solvents expected to give advantages for solution-processed device fabrication. In this study, a series of bistriisopropylsilyl(TIPS)ethynyl anthracene derivatives with azaacene-containing iptycene wings have been synthesized by using condensation reactions. Effects of size of azaacenes on optical properties and packing structures were investigated. UV/Vis absorption and fluorescence spectra indicate that the π-elongation of iptycene units has small effects on the overall π-system, which is also supported by electrochemical measurements. Secondly, single-crystal X-ray analysis implies that the molecules likely have interactions with the iptycene units of adjacent molecules, while the iptycene wings and TIPSethynyl groups can prevent the central anthracene unit from undesirable non-radiative energy loss. Finally, the most emissive derivative was used as a dopant for solution-processed OLEDs, showing obvious electroluminescence with a luminance of over 920 cd m-2 .

7.
Cell Struct Funct ; 43(1): 75-83, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29643274

RESUMO

Although the definition of a noncoding RNA (ncRNA) is an RNA molecule that does not encode a protein, recent evidence has revealed that some ncRNAs are indeed translated to give rise to small polypeptides (usually containing fewer than 100 amino acids). Despite their small size, however, these peptides are often biologically relevant in that they are required for a variety of cellular processes. In this review, we summarize the production and functions of peptides that have been recently identified as translation products of putative ncRNAs.Key words: long noncoding RNA (lncRNA), circular RNA (circRNA), primary miRNA (pri-miRNA), translation, peptide.


Assuntos
Peptídeos/metabolismo , RNA não Traduzido/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , MicroRNAs/metabolismo , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Peptídeos/genética , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , RNA/metabolismo , RNA Circular , RNA Longo não Codificante/metabolismo
8.
EMBO J ; 32(7): 970-81, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23481253

RESUMO

Throughout life, neural stem cells (NSCs) in the adult hippocampus persistently generate new neurons that modify the neural circuitry. Adult NSCs constitute a relatively quiescent cell population but can be activated by extrinsic neurogenic stimuli. However, the molecular mechanism that controls such reversible quiescence and its physiological significance have remained unknown. Here, we show that the cyclin-dependent kinase inhibitor p57(kip2) (p57) is required for NSC quiescence. In addition, our results suggest that reduction of p57 protein in NSCs contributes to the abrogation of NSC quiescence triggered by extrinsic neurogenic stimuli such as running. Moreover, deletion of p57 in NSCs initially resulted in increased neurogenesis in young adult and aged mice. Long-term p57 deletion, on the contrary, led to NSC exhaustion and impaired neurogenesis in aged mice. The regulation of NSC quiescence by p57 might thus have important implications for the short-term (extrinsic stimuli-dependent) and long-term (age-related) modulation of neurogenesis.


Assuntos
Células-Tronco Adultas/metabolismo , Envelhecimento/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Células-Tronco Adultas/citologia , Envelhecimento/genética , Animais , Inibidor de Quinase Dependente de Ciclina p57/genética , Deleção de Genes , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/citologia
9.
Chemistry ; 23(60): 15002-15007, 2017 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-28675573

RESUMO

Air-stable organic semiconductors based on tetrathiafuluvalene (TTF) were developed by synthesising a series of dinaphthotetrathiafulvalene bisimides (DNTTF-Im) using electron-donating TTF, π-extended naphthalene, and electron-withdrawing imide. Electron-spin-resonance spectroscopy and X-ray single-crystal structure analysis of aryl-substituted DNTTF-Im radical cations confirmed that localisation of the spin resides on the electron-donating TTF moiety. The organic field-effect transistor properties derived from the use of highly crystalline n-butyl (C4) and n-hexyl(C6)-substituted DNTTF-Im were assessed. The hole carrier mobility of C6-DNTTF-Im was improved from 3.7×10-3  cm2 V-1 s-1 to 0.30 cm2 V-1 s-1 in ambient conditions. This is attributed to the raise of the substrate temperature from 25 °C to 200 °C during sublimation. The XRD and microscopy analysis suggested that increasing the substrate temperature accelerates the end-on packing resulting in larger grains suitable for hole charge transport parallel to the substrate.

10.
Blood ; 123(22): 3429-39, 2014 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24652995

RESUMO

T cells are key components of the immune system, playing a central role in cell-mediated immunity. The sequential differentiation of T cells is associated with strict regulation of the cell cycle at each developmental stage. A balance between p53 activity and pre-T cell receptor (TCR) signaling regulates proliferation and differentiation decisions made by these cells. The relation between maintenance of this balance and the function of cell cycle regulators has remained largely unknown, however. We now show that mice with T cell-specific deficiency of the cyclin-dependent kinase inhibitor p57 manifest a differentiation block at the early stage of T cell maturation. Further genetic analysis showed that this defect is attributable to an imbalance between p53 activity and pre-TCR signaling caused by hyperactivation of the E2F-p53 pathway. Moreover, ablation of both p57 and p53 in T cells led to the development of aggressive thymic lymphomas with a reduced latency compared with that apparent for p53-deficient mice, whereas ablation of p57 alone did not confer susceptibility to this hematologic malignancy. Our results thus show that the p57-E2F-p53 axis plays a pivotal role in the proper development of T cells as well as in the prevention of lymphomagenesis.


Assuntos
Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Linfoma/genética , Linfoma/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/genética , Diferenciação Celular/genética , Inibidor de Quinase Dependente de Ciclina p57/deficiência , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Feminino , Heterozigoto , Linfoma/mortalidade , Linfoma/patologia , Camundongos , Camundongos Knockout , Fenótipo , Fosforilação , Proteína do Retinoblastoma/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Timo/metabolismo , Timo/patologia
11.
Chemistry ; 22(41): 14462-6, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27429200

RESUMO

We prepared perylene dications 1(2+) and 2(2+) by using "capped" perylene derivatives, and for the first time, successfully obtained single crystals of a perylene dication 1(2+) that enabled us to perform its structural analysis. We realized that the substituted aryl groups on perylene control the positions of positive charges, thus the remaining electronic system satisfies Clar's sextet rule toward the highest number of localized sextets. Experimental and theoretical evidence proved that Clar's aromatic π-sextet rule could be applied even for the dicationic perylenes in a very simple way.

12.
Angew Chem Int Ed Engl ; 54(28): 8175-8, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26013495

RESUMO

An oxidative ring-closure reaction of a tetranaphthylpyrene derivative led to the synthesis of a 56 all-carbon conjugated tetrabenzoperipentacene. In the single-crystal X-ray structure, three molecules make a triple-layered cluster by π-stacking, wherein each layer rotates by 120°, and is thus considered a petit ß-graphite. As for the optical properties, the Stokes shift is extremely small (10 cm(-1) ), thus indicating its remarkably rigid framework. The tetrabenzoperipentacene exhibits reversible five-electron oxidation waves in cyclic voltammetry, and is regarded as a counterpart to the fullerene C60 in terms of stable multicharge-storage nanocarbon materials.

13.
Biochim Biophys Acta ; 1830(2): 2335-44, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22820018

RESUMO

BACKGROUND: Hematopoietic stem cells (HSCs) are characterized by pluripotentiality and self-renewal ability. To maintain a supply of mature blood cells and to avoid HSC exhaustion during the life span of an organism, most HSCs remain quiescent, with only a limited number entering the cell cycle. SCOPE OF REVIEW: The molecular mechanisms by which quiescence is maintained in HSCs are addressed, with recent genetic studies having provided important insight into the relation between the cell cycle activity and stemness of HSCs. MAJOR CONCLUSIONS: The cell cycle is tightly regulated in HSCs by complex factors. Key regulators of the cell cycle in other cell types-including cyclins, cyclin-dependent kinases (CDKs), the retinoblastoma protein family, the transcription factor E2F, and CDK inhibitors-also contribute to such regulation in HSCs. Most, but not all, of these regulators are necessary for maintenance of HSCs, with abnormal activation or suppression of the cell cycle resulting in HSC exhaustion. The cell cycle in HSCs is also regulated by external factors such as cytokines produced by niche cells as well as by the ubiquitin-proteasome pathway. GENERAL SIGNIFICANCE: Studies of the cell cycle in HSCs may shed light on the pathogenesis of hematopoietic disorders, serve as a basis for the development of new therapeutic strategies for such disorders, prove useful for the expansion of HSCs in vitro as a possible replacement for blood transfusion, and provide insight into stem cell biology in general. This article is part of a Special Issue entitled Biochemistry of Stem Cells.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Ciclo Celular/fisiologia , Células-Tronco Hematopoéticas/citologia , Animais , Humanos
14.
J Gastroenterol ; 59(7): 629-640, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38684511

RESUMO

BACKGROUND: Recently, two molecular subtypes of pancreatic ductal adenocarcinoma (PDAC) have been proposed: the "Classical" and "Basal-like" subtypes, with the former showing better clinical outcomes than the latter. However, the "molecular" classification has not been applied in real-world clinical practice. This study aimed to establish patient-derived organoids (PDOs) for PDAC and evaluate their application in subtype classification and clinical outcome prediction. METHODS: We utilized tumor samples acquired through endoscopic ultrasound-guided fine-needle biopsy and established a PDO library for subsequent use in morphological assessments, RNA-seq analyses, and in vitro drug response assays. We also conducted a prospective clinical study to evaluate whether analysis using PDOs can predict treatment response and prognosis. RESULTS: PDOs of PDAC were established at a high efficiency (> 70%) with at least 100,000 live cells. Morphologically, PDOs were classified as gland-like structures (GL type) and densely proliferating inside (DP type) less than 2 weeks after tissue sampling. RNA-seq analysis revealed that the "morphological" subtype (GL vs. DP) corresponded to the "molecular" subtype ("Classical" vs. "Basal-like"). The "morphological" classification predicted the clinical treatment response and prognosis; the median overall survival of patients with GL type was significantly longer than that with DP type (P < 0.005). The GL type showed a better response to gemcitabine than the DP type in vitro, whereas the drug response of the DP type was improved by the combination of ERK inhibitor and chloroquine. CONCLUSIONS: PDAC PDOs help in subtype determination and clinical outcome prediction, thereby facilitating the bench-to-bedside precision medicine for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Organoides , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Organoides/patologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamento farmacológico , Masculino , Prognóstico , Feminino , Idoso , Pessoa de Meia-Idade , Estudos Prospectivos , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico/métodos , Resultado do Tratamento
15.
Elife ; 122024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38529532

RESUMO

Increased levels of lactate, an end-product of glycolysis, have been proposed as a potential surrogate marker for metabolic changes during neuronal excitation. These changes in lactate levels can result in decreased brain pH, which has been implicated in patients with various neuropsychiatric disorders. We previously demonstrated that such alterations are commonly observed in five mouse models of schizophrenia, bipolar disorder, and autism, suggesting a shared endophenotype among these disorders rather than mere artifacts due to medications or agonal state. However, there is still limited research on this phenomenon in animal models, leaving its generality across other disease animal models uncertain. Moreover, the association between changes in brain lactate levels and specific behavioral abnormalities remains unclear. To address these gaps, the International Brain pH Project Consortium investigated brain pH and lactate levels in 109 strains/conditions of 2294 animals with genetic and other experimental manipulations relevant to neuropsychiatric disorders. Systematic analysis revealed that decreased brain pH and increased lactate levels were common features observed in multiple models of depression, epilepsy, Alzheimer's disease, and some additional schizophrenia models. While certain autism models also exhibited decreased pH and increased lactate levels, others showed the opposite pattern, potentially reflecting subpopulations within the autism spectrum. Furthermore, utilizing large-scale behavioral test battery, a multivariate cross-validated prediction analysis demonstrated that poor working memory performance was predominantly associated with increased brain lactate levels. Importantly, this association was confirmed in an independent cohort of animal models. Collectively, these findings suggest that altered brain pH and lactate levels, which could be attributed to dysregulated excitation/inhibition balance, may serve as transdiagnostic endophenotypes of debilitating neuropsychiatric disorders characterized by cognitive impairment, irrespective of their beneficial or detrimental nature.


Assuntos
Disfunção Cognitiva , Endofenótipos , Animais , Camundongos , Humanos , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Lactatos/metabolismo , Concentração de Íons de Hidrogênio
16.
Genes Cells ; 17(9): 768-77, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22897623

RESUMO

Induced pluripotent stem cells (iPSCs) share many biological properties with embryonic stem cells (ESCs), and are generated from somatic cells by expression of some transcription factors such as Oct3/4, Sox2, Klf4 and c-Myc. Among these factors, the abundance of c-Myc is strictly regulated by Fbxw7, a subunit of Skp1-Cul1-F-box protein-type ubiquitin ligase. We have now shown that the expression of Fbxw7 was increased as ESCs differentiated. To investigate the role of Fbxw7 in the ESCs/iPSCs, we examined the impact of Fbxw7 ablation in the efficiency in iPSC generation. The frequency of iPSC generation from mouse embryonic fibroblasts (MEFs) lacking Fbxw7 was markedly greater than that from control MEFs. Depletion of Fbxw7 also resulted in promotion of iPSC generation. Morphology of iPSC clonies from Fbxw7-depleted MEFs appeared more undifferentiated than that from MEFs overexpressing c-Myc. Additional depletion of c-Myc did not abrogate the effect of Fbxw7 depletion, suggesting that c-Myc accumulation is not necessarily required for the increased efficiency in iPSC generation by Fbxw7 ablation. Substrates of Fbxw7 other than c-Myc might therefore play a key role in iPSC generation. These results suggest that transient inhibition of Fbxw7 would be a more promising approach to efficient generation of iPSCs than c-Myc over-expression.


Assuntos
Células-Tronco Embrionárias/citologia , Proteínas F-Box/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Proteínas F-Box/genética , Proteína 7 com Repetições F-Box-WD , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Deleção de Genes , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Camundongos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Tretinoína/farmacologia , Ubiquitina-Proteína Ligases/genética
17.
J Biochem ; 173(4): 237-242, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35959549

RESUMO

Most protein-coding sequences (CDSs) are predicted sequences based on criteria such as a size sufficient to encode a product of at least 100 amino acids and with translation starting at an AUG initiation codon. However, recent studies based on ribosome profiling and mass spectrometry have shown that several RNAs annotated as long as noncoding RNAs are actually translated to generate polypeptides of fewer than 100 amino acids and that many proteins are translated from near-cognate initiation codons such as CUG and GUG. Furthermore, studies of genetically engineered mouse models have revealed that such polypeptides and proteins contribute to diverse physiological processes. In this review, we describe the latest methods for the identification of unannotated CDSs and provide examples of their physiological functions.


Assuntos
Aminoácidos , Peptídeos , Animais , Camundongos , RNA Mensageiro/metabolismo , Códon de Iniciação , Peptídeos/genética , Peptídeos/metabolismo , Aminoácidos/metabolismo , Biossíntese de Proteínas
18.
Cell Rep ; 42(12): 113569, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38071619

RESUMO

Ribosomes polymerize nascent peptides through repeated inter-subunit rearrangements between the classic and hybrid states. The peptidyl-tRNA, the intermediate species during translation elongation, stabilizes the translating ribosome to ensure robust continuity of elongation. However, the translation of acidic residue-rich sequences destabilizes the ribosome, leading to a stochastic premature translation cessation termed intrinsic ribosome destabilization (IRD), which is still ill-defined. Here, we dissect the molecular mechanisms underlying IRD in Escherichia coli. Reconstitution of the IRD event reveals that (1) the prolonged ribosome stalling enhances IRD-mediated translation discontinuation, (2) IRD depends on temperature, (3) the destabilized 70S ribosome complex is not necessarily split, and (4) the destabilized ribosome is subjected to peptidyl-tRNA hydrolase-mediated hydrolysis of the peptidyl-tRNA without subunit splitting or recycling factors-mediated subunit splitting. Collectively, our data indicate that the translation of acidic-rich sequences alters the conformation of the 70S ribosome to an aberrant state that allows the noncanonical premature termination.


Assuntos
Proteínas de Escherichia coli , Biossíntese de Proteínas , Peptídeos/metabolismo , Ribossomos/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
19.
Nat Commun ; 14(1): 2131, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37080962

RESUMO

Although several ribosomal protein paralogs are expressed in a tissue-specific manner, how these proteins affect translation and why they are required only in certain tissues have remained unclear. Here we show that RPL3L, a paralog of RPL3 specifically expressed in heart and skeletal muscle, influences translation elongation dynamics. Deficiency of RPL3L-containing ribosomes in RPL3L knockout male mice resulted in impaired cardiac contractility. Ribosome occupancy at mRNA codons was found to be altered in the RPL3L-deficient heart, and the changes were negatively correlated with those observed in myoblasts overexpressing RPL3L. RPL3L-containing ribosomes were less prone to collisions compared with RPL3-containing canonical ribosomes. Although the loss of RPL3L-containing ribosomes altered translation elongation dynamics for the entire transcriptome, its effects were most pronounced for transcripts related to cardiac muscle contraction and dilated cardiomyopathy, with the abundance of the encoded proteins being correspondingly decreased. Our results provide further insight into the mechanisms and physiological relevance of tissue-specific translational regulation.


Assuntos
Biossíntese de Proteínas , Ribossomos , Animais , Masculino , Camundongos , Músculo Esquelético/metabolismo , Elongação Traducional da Cadeia Peptídica , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
J Biol Chem ; 286(15): 13754-64, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21349854

RESUMO

Control of the growth and differentiation of neural stem cells is fundamental to brain development and is largely dependent on the Notch signaling pathway. The mechanism by which the activity of Notch is regulated during brain development has remained unclear, however. Fbxw7 (also known as Fbw7, SEL-10, hCdc4, or hAgo) is the F-box protein subunit of an Skp1-Cul1-F-box protein (SCF)-type ubiquitin ligase complex that plays a central role in the degradation of Notch family members. We now show that mice with brain-specific deletion of Fbxw7 (Nestin-Cre/Fbxw7(F/F) mice) die shortly after birth with morphological abnormalities of the brain and the absence of suckling behavior. The maintenance of neural stem cells was sustained in association with the accumulation of Notch1 and Notch3, as well as up-regulation of Notch target genes in the mutant mice. Astrogenesis was also enhanced in the mutant mice in vivo, and the differentiation of neural progenitor cells was skewed toward astrocytes rather than neurons in vitro, with the latter effect being reversed by treatment of the cells with a pharmacological inhibitor of the Notch signaling pathway. Our results thus implicate Fbxw7 as a key regulator of the maintenance and differentiation of neural stem cells in the brain.


Assuntos
Diferenciação Celular/fisiologia , Proteínas F-Box/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Receptor Notch1/metabolismo , Receptor Notch2/metabolismo , Células-Tronco/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Proteínas F-Box/genética , Proteína 7 com Repetições F-Box-WD , Camundongos , Camundongos Knockout , Neuroglia/citologia , Neurônios/citologia , Receptor Notch1/genética , Receptor Notch2/genética , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Células-Tronco/citologia , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA