Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heart Vessels ; 36(4): 568-576, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33226494

RESUMO

In non-diabetic patients with severe disease, such as acute myocardial infarction or acute heart failure, admission blood glucose level is associated with their short-term and long-term mortality. We examined whether transient elevation of glucose affects contractile properties in non-diabetic hearts. Force, intracellular Ca2+ ([Ca2+]i), and sarcomere length were measured in trabeculae from rat hearts. To assess contractile properties, maximum velocity of contraction (Max dF/dt) and minimum velocity of relaxation (Min dF/dt) were calculated. The ratio of phosphorylated troponin I (P-TnI) to troponin I (TnI) was measured. One hour after elevation of glucose from 150 to 400 mg/dL, developed force, Max dF/dt, and Min dF/dt were reduced without changes in [Ca2+]i transients at 2.5 Hz stimulation and 2.0 mM [Ca2+]o, while developed force and [Ca2+]i transients showed no changes at 0.5 Hz stimulation and 0.7 mM [Ca2+]o. In the presence of 1 µM KN-93, a Ca2+/calmodulin-dependent protein kinaseII (CaMKII) inhibitor, or 50 µM diazo-5-oxonorleucine, a L-glutamine-D-fructose-6-phosphate amidotransferase inhibitor, the reduction of contractile properties after elevation of glucose was suppressed. Furthermore, 1 h after elevation of glucose to 400 mg/dL at 2.0 mM [Ca2+]o, the ratio of P-TnI to TnI was increased. These results suggest that in non-diabetic hearts under higher Ca2+-load, transient elevation of glucose for 1 h reduces contractile properties probably by activating CaMKII through O-GlcNAcylation. Thus, in the patients with severe disease, transient elevation of blood glucose, such as due to stress, may worsen cardiac function and thereby affect their mortality without known diabetes.


Assuntos
Glucose/metabolismo , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Animais , Cálcio/metabolismo , Modelos Animais , Ratos
2.
Circ J ; 84(4): 551-558, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32092718

RESUMO

BACKGROUND: In non-diabetic patients with acute coronary syndrome, stress hyperglycemia occasionally occurs and is related to their mortality. Whether transient elevation of glucose affects arrhythmia susceptibility in non-diabetic hearts with non-uniform contraction was examined.Methods and Results:Force, intracellular Ca2+([Ca2+]i), and membrane potential were measured in trabeculae from rat hearts. Non-uniform contraction was produced by a jet of paralyzing solution. Ca2+waves and arrhythmias were induced by electrical stimulation (2.0 mmol/L [Ca2+]o). The activity of Ca2+/calmodulin-dependent protein kinaseII (CaMKII) was measured. An elevation of glucose from 150 to 400 mg/dL increased the velocity of Ca2+waves and the number of spontaneous action potentials triggered by electrical stimulation. Besides, the elevation of glucose increased the CaMKII activity. In the presence of 1 µmol/L KN-93, the elevation of glucose did not increase the velocity of Ca2+waves and the number of triggered action potentials. In addition, in the presence of 1 µmol/L autocamtide-2 related inhibitory peptide or 50 µmol/L diazo-5-oxonorleucine, the elevation of glucose did not increase the number of triggered action potentials. Furthermore, the elevation of glucose by adding L-glucose did not increase their number. CONCLUSIONS: In non-diabetic hearts with non-uniform contraction, transient elevation of glucose increases the velocity of Ca2+waves by activating CaMKII,probably through glycosylation with O-linked ß-N-acetylglucosamine, thereby increasing arrhythmia susceptibility.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Glucose/toxicidade , Frequência Cardíaca/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Função Ventricular Direita/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Sinalização do Cálcio/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Ativação Enzimática , Glicosilação , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Miócitos Cardíacos/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
3.
Pflugers Arch ; 470(9): 1349-1357, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29736684

RESUMO

In diseased hearts, impaired muscle within the hearts is passively stretched by contractions of the more viable neighboring muscle during the contraction phase. We investigated whether in the myocardium with nonuniform contraction such passive stretch regionally generates ROS within the stretched region and exacerbates arrhythmias. In trabeculae from rat hearts, force, intracellular Ca2+, and membrane potential were measured. To assess regional ROS generation, the slope of the change in the 2',7'-dichlorofluorescein fluorescence (DCFslope) was calculated at the each pixel position along the long axis of trabeculae using DCF fluorescence images. Ca2+ waves and arrhythmias were induced by electrical stimulation. A H2O2 (1 mmol/L) jet regionally increased the DCFslope within the jet-exposed region. A blebbistatin (10 µmol/L) jet caused passive stretch of the muscle within the jet-exposed region during the contraction phase and increased the DCFslope within the stretched region, the velocity of Ca2+ waves, and the number of beats after electrical stimulation (0.2 µmol/L isoproterenol), while 3 µmol/L diphenyleneiodonium (DPI), NADPH oxidase inhibitor, decreased them. A jet of a solution containing 0.2 mmol/L H2O2 in addition to 10 µmol/L blebbistatin also increased them. A H2O2 jet within the region where Ca2+ waves propagated increased their velocity. In the myocardium with nonuniform contraction, passive stretch of the muscle by contractions of the neighboring muscle regionally increases ROS within the stretched region, and the regional ROS exacerbates arrhythmias by activating the propagation of Ca2+ waves.


Assuntos
Arritmias Cardíacas/metabolismo , Contração Miocárdica/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Coração/efeitos dos fármacos , Coração/fisiologia , Peróxido de Hidrogênio/farmacologia , Isoproterenol/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Ratos
4.
Proc Natl Acad Sci U S A ; 112(8): E901-10, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25675495

RESUMO

Floral induction is a crucial developmental step in higher plants. Florigen, a mobile floral activator that is synthesized in the leaf and transported to the shoot apex, was recently identified as a protein encoded by FLOWERING LOCUS T (FT) and its orthologs; the rice florigen is Heading date 3a (Hd3a) protein. The 14-3-3 proteins mediate the interaction of Hd3a with the transcription factor OsFD1 to form a ternary structure called the florigen activation complex on the promoter of OsMADS15, a rice APETALA1 ortholog. However, crucial information, including the spatiotemporal overlap among FT-like proteins and the components of florigen activation complex and downstream genes, remains unclear. Here, we confirm that Hd3a coexists, in the same regions of the rice shoot apex, with the other components of the florigen activation complex and its transcriptional targets. Unexpectedly, however, RNA-sequencing analysis of shoot apex from wild-type and RNA-interference plants depleted of florigen activity revealed that 4,379 transposable elements (TEs; 58% of all classifiable rice TEs) were expressed collectively in the vegetative and reproductive shoot apex. Furthermore, in the reproductive shoot apex, 214 TEs were silenced by florigen. Our results suggest a link between floral induction and regulation of TEs.


Assuntos
Elementos de DNA Transponíveis/genética , Flores/fisiologia , Inativação Gênica , Meristema/fisiologia , Oryza/genética , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Sequência de Bases , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Florígeno/farmacologia , Flores/efeitos dos fármacos , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Genes de Plantas , Inflorescência/efeitos dos fármacos , Inflorescência/metabolismo , Meristema/efeitos dos fármacos , Meristema/genética , Organogênese/efeitos dos fármacos , Oryza/efeitos dos fármacos , Fenótipo , Proteínas de Plantas/genética , Transporte Proteico/efeitos dos fármacos , Reprodutibilidade dos Testes , Reprodução/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
5.
Cardiovasc Res ; 117(5): 1325-1338, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32683442

RESUMO

AIMS: Heart failure with preserved left ventricular ejection fraction (HFpEF) is a serious health problem worldwide, as no effective therapy is yet available. We have previously demonstrated that our low-intensity pulsed ultrasound (LIPUS) therapy is effective and safe for angina and dementia. In this study, we aimed to examine whether the LIPUS therapy also ameliorates cardiac diastolic dysfunction in mice. METHODS AND RESULTS: Twelve-week-old obese diabetic mice (db/db) and their control littermates (db/+) were treated with either the LIPUS therapy [1.875 MHz, 32 cycles, Ispta (spatial peak temporal average intensity) 117-162 mW/cm2, 0.25 W/cm2] or placebo procedure two times a week for 4 weeks. At 20-week-old, transthoracic echocardiography and invasive haemodynamic analysis showed that cardiac diastolic function parameters, such as e', E/e', end-diastolic pressure-volume relationship, Tau, and dP/dt min, were all deteriorated in placebo-treated db/db mice compared with db/+ mice, while systolic function was preserved. Importantly, these cardiac diastolic function parameters were significantly ameliorated in the LIPUS-treated db/db mice. We also measured the force (F) and intracellular Ca2+ ([Ca2+]i) in trabeculae dissected from ventricles. We found that relaxation time and [Ca2+]i decay (Tau) were prolonged during electrically stimulated twitch contractions in db/db mice, both of which were significantly ameliorated in the LIPUS-treated db/db mice, indicating that the LIPUS therapy also improves relaxation properties at tissue level. Functionally, exercise capacity was also improved in the LIPUS-treated db/db mice. Histologically, db/db mice displayed progressed cardiomyocyte hypertrophy and myocardial interstitial fibrosis, while those changes were significantly suppressed in the LIPUS-treated db/db mice. Mechanistically, western blot showed that the endothelial nitric oxide synthase (eNOS)-nitric oxide (NO)-cGMP-protein kinase G (PKG) pathway and Ca2+-handling molecules were up-regulated in the LIPUS-treated heart. CONCLUSIONS: These results indicate that the LIPUS therapy ameliorates cardiac diastolic dysfunction in db/db mice through improvement of eNOS-NO-cGMP-PKG pathway and cardiomyocyte Ca2+-handling system, suggesting its potential usefulness for the treatment of HFpEF patients.


Assuntos
Insuficiência Cardíaca Diastólica/terapia , Volume Sistólico , Terapia por Ultrassom , Ondas Ultrassônicas , Disfunção Ventricular Esquerda/terapia , Função Ventricular Esquerda , Animais , Sinalização do Cálcio , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Modelos Animais de Doenças , Fibrose , Insuficiência Cardíaca Diastólica/genética , Insuficiência Cardíaca Diastólica/metabolismo , Insuficiência Cardíaca Diastólica/fisiopatologia , Preparação de Coração Isolado , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA