Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RNA ; 16(8): 1570-83, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20558544

RESUMO

DiGeorge critical region 8 (DGCR8) is essential for maturation of microRNAs (miRNAs) in animals. In the cleavage of primary transcripts of miRNAs (pri-miRNAs) by the Drosha nuclease, the DGCR8 protein directly binds and recognizes pri-miRNAs through a mechanism currently controversial. Our previous data suggest that DGCR8 trimerizes upon cooperative binding to pri-mir-30a. However, a separate study proposed a model in which a DGCR8 molecule contacts one or two pri-miRNA molecules using its two double-stranded RNA binding domains. Here, we extensively characterized the interaction between DGCR8 and pri-miRNAs using biochemical and structural methods. First, a strong correlation was observed between the association of DGCR8 with pri-mir-30a and the rate of pri-miRNA processing in vitro. Second, we show that the high binding cooperativity allows DGCR8 to distinguish pri-miRNAs from a nonspecific competitor with subtle differences in dissociation constants. The highly cooperative binding of DGCR8 to a pri-miRNA is mediated by the formation of higher-order structures, most likely a trimer of DGCR8 dimers, on the pri-miRNA. These properties are not limited to its interaction with pri-mir-30a. Furthermore, the amphipathic C-terminal helix of DGCR8 is important both for trimerization of DGCR8 on pri-miRNAs and for the cleavage of pri-miRNAs by Drosha. Finally, our three-dimensional model from electron tomography analysis of the negatively stained DGCR8-pri-mir-30a complex directly supports the trimerization model. Our study provides a molecular basis for recognition of pri-miRNAs by DGCR8. We further propose that the higher-order structures of the DGCR8-pri-miRNA complexes trigger the cleavage of pri-miRNAs by Drosha.


Assuntos
MicroRNAs/metabolismo , Ribonuclease III/metabolismo , Animais , RNA Helicases DEAD-box , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/metabolismo , MicroRNAs/química , MicroRNAs/genética , Estrutura Terciária de Proteína/genética , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Ribonuclease III/química , Ribonuclease III/genética
2.
Nat Struct Mol Biol ; 14(1): 23-9, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17159994

RESUMO

MicroRNAs (miRNAs) regulate the expression of a large number of protein-coding genes. Their primary transcripts (pri-miRNAs) have to undergo multiple processing steps to reach the functional form. Little is known about how the processing of miRNAs is modulated. Here we show that the RNA-binding protein DiGeorge critical region-8 (DGCR8), which is essential for the first processing step, is a heme-binding protein. The association with heme promotes dimerization of DGCR8. The heme-bound DGCR8 dimer seems to trimerize upon binding pri-miRNAs and is active in triggering pri-miRNA cleavage, whereas the heme-free monomer is much less active. A heme-binding region of DGCR8 inhibits the pri-miRNA-processing activity of the monomer. This putative autoinhibition is overcome by heme. Our finding that heme is involved in pri-miRNA processing suggests that the gene-regulation network of miRNAs and signal-transduction pathways involving heme might be connected.


Assuntos
Heme/metabolismo , MicroRNAs/metabolismo , Proteínas/metabolismo , Processamento Pós-Transcricional do RNA , Sequência de Aminoácidos , Dimerização , Heme/química , Hemeproteínas/química , Hemeproteínas/metabolismo , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo
3.
J Biol Chem ; 279(43): 44239-42, 2004 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-15342628

RESUMO

Two classes of RNA polymerases transcribe RNA from promoters on DNA templates: promoter recognition-competent single polypeptides and multisubunit enzymes that require separable promoter recognition factors. Eukaryotic mitochondria utilize an unusual hybrid of these classes composed of a "core" RNA polymerase related to the single polypeptide enzymes plus a "specificity factor" necessary for promoter utilization. Using supercoiled or premelted templates, we have discovered that the yeast core mitochondrial RNA polymerase (Rpo41) has the intrinsic ability to initiate from promoters without its specificity factor (Mtf1). Rpo41 requires the mitochondrial promoter sequence (ATATAAGTA) for this activity. On premelted templates addition of Mtf1 actually inhibits the promoter selective activity of Rpo41. Mtf1 increases abortive relative to productive transcription by Rpo41, possibly by stabilizing the promoter complex and reducing escape into elongation. The requirement for Mtf1 on closed but not open templates indicates that Mtf1 facilitates melting but not recognition of promoters.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Regiões Promotoras Genéticas , Sequência de Bases , DNA/química , RNA Polimerases Dirigidas por DNA/química , Relação Dose-Resposta a Droga , Mitocôndrias/patologia , Proteínas Mitocondriais , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , RNA Ribossômico/química , RNA de Transferência/química , Proteínas Recombinantes/química , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Fatores de Transcrição/metabolismo , Transcrição Gênica
4.
J Biol Chem ; 279(3): 2012-9, 2004 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-14570924

RESUMO

The yeast mitochondrial RNA polymerase (RNAP) is composed of the core RNAP, Rpo41, and the mitochondrial transcription factor, Mtf1. Both are required for mitochondrial transcription, but how the two proteins interact to create a functional, promoter-selective holoenzyme is still unknown. Rpo41 is similar to the single polypeptide bacteriophage T7RNAP, which does not require additional factors for promoter-selective initiation but whose activity is modulated during infection by association with T7 lysozyme. In this study we used the co-crystal structure of T7RNAP and T7 lysozyme as a model to define a potential Mtf1 interaction surface on Rpo41, making site-directed mutations in Rpo41 at positions predicted to reside at the same location as the T7RNAP/T7 lysozyme interface. We identified Rpo41 mutant E1224A as having reduced interactions with Mtf1 in a two-hybrid assay and a temperature-sensitive petite phenotype in vivo. Although the E1224A mutant has full activity in a non-selective in vitro transcription assay, it is temperature-sensitive for selective transcription from linear DNA templates containing the 14S rRNA, COX2, and tRNAcys mitochondrial promoters. The tRNAcys promoter defect can be rescued by template supercoiling but not by addition of a dinucleotide primer. The fact that mutation of Rpo41 results in selective transcription defects indicates that the core RNAP, like T7RNAP, plays an important role in promoter utilization.


Assuntos
RNA Polimerases Dirigidas por DNA/fisiologia , Mitocôndrias/enzimologia , Proteínas Mitocondriais/fisiologia , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/fisiologia , Sequência de Aminoácidos , RNA Polimerases Dirigidas por DNA/química , Dados de Sequência Molecular , Mutação , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Transcrição Gênica , Proteínas Virais
5.
Protein Expr Purif ; 35(1): 126-30, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15039075

RESUMO

The mitochondrial RNA polymerase (mtRNAP) from Saccharomyces cerevisiae (yeast) is composed of two nuclear encoded proteins, the core RNA polymerase (Rpo41) and the mitochondrial transcription factor (Mtf1). Although Rpo41 is strikingly similar to the single subunit RNAPs from the T7 and T3 bacteriophage (T7RNAP), the core mtRNAP requires Mtf1 for accurate transcription from a linear promoter-containing DNA template, while T7RNAP does not require any other additional factors for promoter selectivity. The fact that the mtRNAP requires an additional promoter utilization factor makes it an excellent model system for the analysis of the transitions that occur during transcription initiation. However, large-scale purification of the 153 kDa Rpo41 has only been reported from yeast cells, or as a recombinant from baculovirus, both sources requiring extensive purification with poor yields. We have developed a His-tagged Rpo41 expression construct suitable for rapid purification of large amounts of soluble Rpo41 from bacterial cells. Transcriptionally active forms of both wild type and point mutants of Rpo41 can be purified by a combination of batch ion exchange chromatography to remove nucleic acids and nickel affinity chromatography. An additional advantage of the isolation of Rpo41 from bacterial cells is the absence of its associated specificity factor Mtf1. This allows analysis of combinations of mutant forms of both components of the mtRNAP holoenzyme.


Assuntos
RNA Polimerases Dirigidas por DNA , RNA Polimerases Dirigidas por DNA/isolamento & purificação , RNA Polimerases Dirigidas por DNA/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais , Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Regulação Fúngica da Expressão Gênica , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/isolamento & purificação , Proteínas Mitocondriais/metabolismo , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA