Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Biochemistry ; 54(3): 753-64, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25545070

RESUMO

The NuoD segment (homologue of mitochondrial 49 kDa subunit) of the proton-translocating NADH:quinone oxidoreductase (complex I/NDH-1) from Escherichia coli is in the hydrophilic domain and bears many highly conserved amino acid residues. The three-dimensional structural model of NDH-1 suggests that the NuoD segment, together with the neighboring subunits, constitutes a putative quinone binding cavity. We used the homologous DNA recombination technique to clarify the role of selected key amino acid residues of the NuoD segment. Among them, residues Tyr273 and His224 were considered candidates for having important interactions with the quinone headgroup. Mutant Y273F retained partial activity but lost sensitivity to capsaicin-40. Mutant H224R scarcely affected the activity, suggesting that this residue may not be essential. His224 is located in a loop near the N-terminus of the NuoD segment (Gly217-Phe227) which is considered to form part of the quinone binding cavity. In contrast to the His224 mutation, mutants G217V, P218A, and G225V almost completely lost the activity. One region of this loop is positioned close to a cytosolic loop of the NuoA subunit in the membrane domain, and together they seem to be important in keeping the quinone binding cavity intact. The structural role of the longest helix in the NuoD segment located behind the quinone binding cavity was also investigated. Possible roles of other highly conserved residues of the NuoD segment are discussed.


Assuntos
Aminoácidos/metabolismo , Sequência Conservada , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Inibidores Enzimáticos/farmacologia , Immunoblotting , Concentração Inibidora 50 , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , Eletroforese em Gel de Poliacrilamida Nativa , Oxirredutases/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Prótons , Alinhamento de Sequência , Análise de Sequência de Proteína , Relação Estrutura-Atividade
2.
J Biol Chem ; 288(34): 24705-16, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23864658

RESUMO

The proton-translocating NADH-quinone oxidoreductase (complex I/NDH-1) contains a peripheral and a membrane domain. Three antiporter-like subunits in the membrane domain, NuoL, NuoM, and NuoN (ND5, ND4 and ND2, respectively), are structurally similar. We analyzed the role of NuoN in Escherichia coli NDH-1. The lysine residue at position 395 in NuoN (NLys(395)) is conserved in NuoL (LLys(399)) but is replaced by glutamic acid (MGlu(407)) in NuoM. Our mutation study on NLys(395) suggests that this residue participates in the proton translocation. Furthermore, we found that MGlu(407) is also essential and most likely interacts with conserved LArg(175). Glutamic acids, NGlu(133), MGlu(144), and LGlu(144), are corresponding residues. Unlike mutants of MGlu(144) and LGlu(144), mutation of NGlu(133) scarcely affected the energy-transducing activities. However, a double mutant of NGlu(133) and nearby KGlu(72) showed significant inhibition of these activities. This suggests that NGlu(133) bears a functional role similar to LGlu(144) and MGlu(144) but its mutation can be partially compensated by the nearby carboxyl residue. Conserved prolines located at loops of discontinuous transmembrane helices of NuoL, NuoM, and NuoN were shown to play a similar role in the energy-transducing activity. It seems likely that NuoL, NuoM, and NuoN pump protons by a similar mechanism. Our data also revealed that NLys(158) is one of the key interaction points with helix HL in NuoL. A truncation study indicated that the C-terminal amphipathic segments of NTM14 interacts with the Mß sheet located on the opposite side of helix HL. Taken together, the mechanism of H(+) translocation in NDH-1 is discussed.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Subunidades Proteicas/metabolismo , Substituição de Aminoácidos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Transporte de Íons/fisiologia , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Prótons
3.
J Bioenerg Biomembr ; 46(4): 279-87, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24973951

RESUMO

The proton-translocating NADH-quinone oxidoreductase (complex I/NDH-1) is the first and largest enzyme of the respiratory chain which has a central role in cellular energy production and is implicated in many human neurodegenerative diseases and aging. It is believed that the peripheral domain of complex I/NDH-1 transfers the electron from NADH to Quinone (Q) and the redox energy couples the proton translocation in the membrane domain. To investigate the mechanism of the proton translocation, in a series of works we have systematically studied all membrane subunits in the Escherichia coli NDH-1 by site-directed mutagenesis. In this mini-review, we have summarized our strategy and results of the mutagenesis by depicting residues essential for proton translocation, along with those for subunit connection. It is suggested that clues to understanding the driving forces of proton translocation lie in the similarities and differences of the membrane subunits, highlighting the communication of essential charged residues among the subunits. A possible proton translocation mechanism with all membrane subunits operating in unison is described.


Assuntos
Membrana Celular/química , Complexo I de Transporte de Elétrons/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas de Membrana/química , Subunidades Proteicas/química , Prótons , Benzoquinonas/química , Benzoquinonas/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Transporte de Íons/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutagênese Sítio-Dirigida , NAD/química , NAD/genética , NAD/metabolismo , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
4.
J Biol Chem ; 287(51): 42763-72, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23105119

RESUMO

The bacterial H(+)-translocating NADH:quinone oxidoreductase (NDH-1) catalyzes electron transfer from NADH to quinone coupled with proton pumping across the cytoplasmic membrane. The NuoK subunit (counterpart of the mitochondrial ND4L subunit) is one of the seven hydrophobic subunits in the membrane domain and bears three transmembrane segments (TM1-3). Two glutamic residues located in the adjacent transmembrane helices of NuoK are important for the energy coupled activity of NDH-1. In particular, mutation of the highly conserved carboxyl residue ((K)Glu-36 in TM2) to Ala led to a complete loss of the NDH-1 activities. Mutation of the second conserved carboxyl residue ((K)Glu-72 in TM3) moderately reduced the activities. To clarify the contribution of NuoK to the mechanism of proton translocation, we relocated these two conserved residues. When we shifted (K)Glu-36 along TM2 to positions 32, 38, 39, and 40, the mutants largely retained energy transducing NDH-1 activities. According to the recent structural information, these positions are located in the vicinity of (K)Glu-36, present in the same helix phase, in an immediately before and after helix turn. In an earlier study, a double mutation of two arginine residues located in a short cytoplasmic loop between TM1 and TM2 (loop-1) showed a drastic effect on energy transducing activities. Therefore, the importance of this cytosolic loop of NuoK ((K)Arg-25, (K)Arg-26, and (K)Asn-27) for the energy transducing activities was extensively studied. The probable roles of subunit NuoK in the energy transducing mechanism of NDH-1 are discussed.


Assuntos
Metabolismo Energético , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Membrana/metabolismo , NADH Desidrogenase/metabolismo , Subunidades Proteicas/metabolismo , Sequência de Aminoácidos , Ácido Glutâmico/metabolismo , Concentração de Íons de Hidrogênio , Immunoblotting , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , NAD/metabolismo , NADH Desidrogenase/química , Eletroforese em Gel de Poliacrilamida Nativa , Oxirredução , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Prótons
5.
J Biol Chem ; 287(21): 17363-17373, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22474289

RESUMO

Bacterial proton-translocating NADH:quinone oxidoreductase (NDH-1) consists of a peripheral and a membrane domain. The peripheral domain catalyzes the electron transfer from NADH to quinone through a chain of seven iron-sulfur (Fe/S) clusters. Subunit NuoI in the peripheral domain contains two [4Fe-4S] clusters (N6a and N6b) and plays a role in bridging the electron transfer from cluster N5 to the terminal cluster N2. We constructed mutants for eight individual Cys-coordinating Fe/S clusters. With the exception of C63S, all mutants had damaged architecture of NDH-1, suggesting that Cys-coordinating Fe/S clusters help maintain the NDH-1 structure. Studies of three mutants (C63S-coordinating N6a, P110A located near N6a, and P71A in the vicinity of N6b) were carried out using EPR measurement. These three mutations did not affect the EPR signals from [2Fe-2S] clusters and retained electron transfer activities. Signals at g(z) = 2.09 disappeared in C63S and P110A but not in P71A. Considering our data together with the available information, g(z,x) = 2.09, 1.88 signals are assigned to cluster N6a. It is of interest that, in terms of g(z,x) values, cluster N6a is similar to cluster N4. In addition, we investigated the residues (Ile-94 and Ile-100) that are predicted to serve as electron wires between N6a and N6b and between N6b and N2, respectively. Replacement of Ile-100 and Ile-94 with Ala/Gly did not affect the electron transfer activity significantly. It is concluded that conserved Ile-100 and Ile-94 are not essential for the electron transfer.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Membrana/metabolismo , NADH Desidrogenase/metabolismo , NAD/metabolismo , Substituição de Aminoácidos , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons/fisiologia , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , NAD/genética , NADH Desidrogenase/genética , Estrutura Terciária de Proteína
6.
Neurobiol Dis ; 58: 281-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23816754

RESUMO

Mitochondrial defects can have significant consequences on many aspects of neuronal physiology. In particular, deficiencies in the first enzyme complex of the mitochondrial respiratory chain (complex I) are considered to be involved in a number of human neurodegenerative diseases. The current work highlights a tight correlation between the inhibition of complex I and the state of axonal myelination of the optic nerve. Exposing the visual pathway of rats to rotenone, a complex I inhibitor, resulted in disorganization of the node of Ranvier. The structure and function of the node depend on specific cell adhesion molecules, among others, CASPR (contactin associated protein) and contactin. CASPR and contactin are both on the axonal surfaces and need to be associated to be able to anchor their myelin counterpart. Here we show that inhibition of mitochondrial complex I by rotenone in rats induces reactive oxygen species, disrupts the interaction of CASPR and contactin couple, and thus damages the organization and function of the node of Ranvier. Demyelination of the optic nerve occurs as a consequence which is accompanied by a loss of vision. The physiological impairment could be reversed by introducing an alternative NADH dehydrogenase to the mitochondria of the visual system. The restoration of the nodal structure was specifically correlated with visual recovery in the treated animal.


Assuntos
Doenças Desmielinizantes/patologia , Complexo I de Transporte de Elétrons/metabolismo , Nervo Óptico/patologia , Nós Neurofibrosos/patologia , Animais , Moléculas de Adesão Celular , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Contagem de Células , Contactinas/genética , Contactinas/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Modelos Animais de Doenças , Inseticidas/farmacologia , Masculino , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nervo Óptico/efeitos dos fármacos , Nós Neurofibrosos/efeitos dos fármacos , Nós Neurofibrosos/ultraestrutura , Ratos , Ratos Long-Evans , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia , Fatores de Tempo , Vias Visuais/efeitos dos fármacos , Vias Visuais/metabolismo , Vias Visuais/ultraestrutura
7.
Proc Natl Acad Sci U S A ; 107(20): 9105-10, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20435911

RESUMO

Mutations in mitochondrial oxidative phosphorylation complex I are associated with multiple pathologies, and complex I has been proposed as a crucial regulator of animal longevity. In yeast, the single-subunit NADH dehydrogenase Ndi1 serves as a non-proton-translocating alternative enzyme that replaces complex I, bringing about the reoxidation of intramitochondrial NADH. We have created transgenic strains of Drosophila that express yeast NDI1 ubiquitously. Mitochondrial extracts from NDI1-expressing flies displayed a rotenone-insensitive NADH dehydrogenase activity, and functionality of the enzyme in vivo was confirmed by the rescue of lethality resulting from RNAi knockdown of complex I. NDI1 expression increased median, mean, and maximum lifespan independently of dietary restriction, and with no change in sirtuin activity. NDI1 expression mitigated the aging associated decline in respiratory capacity and the accompanying increase in mitochondrial reactive oxygen species production, and resulted in decreased accumulation of markers of oxidative damage in aged flies. Our results support a central role of mitochondrial oxidative phosphorylation complex I in influencing longevity via oxidative stress, independently of pathways connected to nutrition and growth signaling.


Assuntos
Envelhecimento/metabolismo , Drosophila melanogaster/fisiologia , Complexo I de Transporte de Elétrons/metabolismo , Longevidade/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animais , Western Blotting , Restrição Calórica , Drosophila melanogaster/enzimologia , Complexo I de Transporte de Elétrons/genética , Histocitoquímica , Longevidade/genética , Mitocôndrias/metabolismo , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
J Biol Chem ; 286(39): 34007-14, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21835926

RESUMO

The proton-translocating NADH-quinone oxidoreductase (complex I/NDH-1) is a multisubunit enzymatic complex. It has a characteristic L-shaped form with two domains, a hydrophilic peripheral domain and a hydrophobic membrane domain. The membrane domain contains three antiporter-like subunits (NuoL, NuoM, and NuoN, Escherichia coli naming) that are considered to be involved in the proton translocation. Deletion of either NuoL or NuoM resulted in an incomplete assembly of NDH-1 and a total loss of the NADH-quinone oxidoreductase activity. We have truncated the C terminus segments of NuoM and NuoL by introducing STOP codons at different locations using site-directed mutagenesis of chromosomal DNA. Our results suggest an important structural role for the C-terminal segments of both subunits. The data further advocate that the elimination of the last transmembrane helix (TM14) of NuoM and the TM16 (at least C-terminal seven residues) or together with the HL helix and the TM15 of the NuoL subunit lead to reduced stability of the membrane arm and therefore of the whole NDH-1 complex. A region of NuoL critical for stability of NDH-1 architecture has been discussed.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , NADH Desidrogenase/metabolismo , Cromossomos Bacterianos/genética , DNA Bacteriano/genética , Estabilidade Enzimática/fisiologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Deleção de Genes , Mutagênese Sítio-Dirigida , NADH Desidrogenase/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Prótons
9.
J Biol Chem ; 286(11): 9287-97, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21220430

RESUMO

The flavoprotein rotenone-insensitive internal NADH-ubiquinone (UQ) oxidoreductase (Ndi1) is a member of the respiratory chain in Saccharomyces cerevisiae. We reported previously that bound UQ in Ndi1 plays a key role in preventing the generation of reactive oxygen species. Here, to elucidate this mechanism, we investigated biochemical properties of Ndi1 and its mutants in which highly conserved amino acid residues (presumably involved in NADH and/or UQ binding sites) were replaced. We found that wild-type Ndi1 formed a stable charge transfer (CT) complex (around 740 nm) with NADH, but not with NADPH, under anaerobic conditions. The intensity of the CT absorption band was significantly increased by the presence of bound UQ or externally added n-decylbenzoquinone. Interestingly, however, when Ndi1 was exposed to air, the CT band transiently reached the same maximum level regardless of the presence of UQ. This suggests that Ndi1 forms a ternary complex with NADH and UQ, but the role of UQ in withdrawing an electron can be substitutable with oxygen. Proteinase K digestion analysis showed that NADH (but not NADPH) binding induces conformational changes in Ndi1. The kinetic study of wild-type and mutant Ndi1 indicated that there is no overlap between NADH and UQ binding sites. Moreover, we found that the bound UQ can reversibly dissociate from Ndi1 and is thus replaceable with other quinones in the membrane. Taken together, unlike other NAD(P)H-UQ oxidoreductases, the Ndi1 reaction proceeds through a ternary complex (not a ping-pong) mechanism. The bound UQ keeps oxygen away from the reduced flavin.


Assuntos
Complexo I de Transporte de Elétrons/química , NAD/química , Oxigênio/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Ubiquinona/química , Anaerobiose/fisiologia , Sítios de Ligação , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Cinética , Mutação , NAD/genética , NAD/metabolismo , Oxirredução , Oxigênio/metabolismo , Estrutura Quaternária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquinona/genética , Ubiquinona/metabolismo
10.
Biochemistry ; 49(47): 10072-80, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-20979355

RESUMO

The prokaryotic proton-translocating NADH-quinone oxidoreductase (NDH-1) is an L-shaped membrane-bound enzyme that contains 14 subunits (NuoA-NuoN or Nqo1-Nqo14). All subunits have their counterparts in the eukaryotic enzyme (complex I). NDH-1 consists of two domains: the peripheral arm (NuoB, -C, -D, -E, -F, -G, and -I) and the membrane arm (NuoA, -H, -J, -K, -L, -M, and -N). In Escherichia coli NDH-1, the hydrophilic subunits NuoC/Nqo5/30k and NuoD/Nqo4/49k are fused together in a single polypeptide as the NuoCD subunit. The NuoCD subunit is the only subunit that does not bear a cofactor in the peripheral arm. While some roles for inhibitor and quinone association have been reported for the NuoD segment, structural and functional roles of the NuoC segment remain mostly elusive. In this work, 14 highly conserved residues of the NuoC segment were mutated and 21 mutants were constructed using the chromosomal gene manipulation technique. From the enzymatic assays and immunochemical and blue-native gel analyses, it was found that residues Glu-138, Glu-140, and Asp-143 that are thought to be in the third α-helix are absolutely required for the energy-transducing NDH-1 activities and the assembly of the whole enzyme. Together with available information for the hydrophobic subunits, we propose that Glu-138, Glu-140, and Asp-143 of the NuoC segment may have a pivotal role in the structural stability of NDH-1.


Assuntos
Quinona Redutases/química , Sequência de Aminoácidos , Ácido Aspártico/química , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Ácido Glutâmico/química , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Prótons , Alinhamento de Sequência
11.
Biochemistry ; 49(13): 2973-80, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20192260

RESUMO

The Ndi1 enzyme found in the mitochondrial membrane of Saccharomyces cerevisiae is an NDH-2-type alternative NADH-quinone oxidoreductase. As Ndi1 is expected to be a possible remedy for complex I defects of mammalian mitochondria, a detailed biochemical characterization of the enzyme is needed. To identify the ubiquinone (UQ) binding site in Ndi1, we conducted photoaffinity labeling using a photoreactive biotinylated UQ mimic (compound 2) synthesized following a concept of the least possible modification of the substituents on the quinone ring. Cleavage with CNBr of Ndi1 cross-linked by 2 revealed the UQ ring of 2 to be specifically cross-linked to the Phe281-Met410 region (130 amino acids). Digestion of the CNBr fragment with V8 protease and lysylendopeptidase (Lys-C) gave approximately 8 and approximately 4 kDa peptides, respectively. The approximately 8 kDa V8 digest was identified as the Thr329-Glu399 region (71 amino acids) by an N-terminal sequence analysis. Although the approximately 4 kDa Lys-C digest could not be identified by N-terminal sequence analysis, the band was thought to cover the Gly374-Lys405 region (32 amino acids). Taken together, the binding site of the Q ring of 2 must be located in a common region of the V8 protease, and Lys-C digests Gly374-Glu399 (26 amino acids). Superimposition of the Ndi1 sequence onto a three-dimensional structural model of NDH-2 from Escherichia coli suggested that the C-terminal portion of this region is close to the isoalloxazine ring of FAD.


Assuntos
Complexo I de Transporte de Elétrons/química , Marcadores de Fotoafinidade/química , Quinona Redutases/química , Proteínas de Saccharomyces cerevisiae/química , Ubiquinona/metabolismo , Sítios de Ligação , Complexo I de Transporte de Elétrons/metabolismo , Proteínas Mitocondriais/química , Mapeamento de Peptídeos/métodos , Marcadores de Fotoafinidade/síntese química , Conformação Proteica , Quinona Redutases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
J Biol Chem ; 284(48): 33062-9, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19815558

RESUMO

The bacterial H(+)-pumping NADH-quinone oxidoreductase (NDH-1) is an L-shaped membrane-bound enzymatic complex. Escherichia coli NDH-1 is composed of 13 subunits (NuoA-N). NuoM (ND4) subunit is one of the hydrophobic subunits that constitute the membrane arm of NDH-1 and was predicted to bear 14 helices. We attempted to clarify the membrane topology of NuoM by the introduction of histidine tags into different positions by chromosomal site-directed mutagenesis. From the data, we propose a topology model containing 12 helices (helices I-IX and XII-XIV) located in transmembrane position and two (helices X and XI) present in the cytoplasm. We reported previously that residue Glu(144) of NuoM was located in the membrane (helix V) and was essential for the energy-coupling activities of NDH-1 (Torres-Bacete, J., Nakamaru-Ogiso, E., Matsuno-Yagi, A., and Yagi, T. (2007) J. Biol. Chem. 282, 36914-36922). Using mutant E144A, we studied the effect of shifting the glutamate residue to all sites within helix V and three sites each in helix IV and VI on the function of NDH-1. Twenty double site-directed mutants including the mutation E144A were constructed and characterized. None of the mutants showed alteration in the detectable levels of expressed NuoM or on the NDH-1 assembly. In addition, most of the double mutants did not restore the energy transducing NDH-1 activities. Only two mutants E144A/F140E and E144A/L147E, one helix turn downstream and upstream restored the energy transducing activities of NDH-1. Based on these results, a role of Glu(144) for proton translocation has been discussed.


Assuntos
Proteínas de Escherichia coli/genética , Ácido Glutâmico/genética , Mutação , NADH Desidrogenase/genética , Sítios de Ligação , Membrana Celular/enzimologia , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ácido Glutâmico/metabolismo , Immunoblotting , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , NADH Desidrogenase/química , NADH Desidrogenase/metabolismo , Estrutura Secundária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
14.
J Bioenerg Biomembr ; 41(6): 493-7, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19904590

RESUMO

Mitochondrial impairment has been collecting more and more attention as a contributing factor to the etiology of Parkinson's disease. Above all, the NADH-quinone oxidoreductase, complex I, of the respiratory chain seems to be most culpable. Complex I dysfunction is translated to an increased production of reactive oxygen species and a decreased energy supply. In the brain, the dopaminergic neurons are one of the most susceptible cells. Their death is directly linked to the disease apparition. Developing an effective gene therapy is challenged by harmful actions of reactive oxygen species. To overcome this problem a therapeutic candidate must be able to restore the NADH-quinone oxidoreductase activity regardless of how complex I is impaired. Here we discuss the potency of the yeast alternative NADH dehydrogenase, the Ndi1 protein, to reinstate the mitochondrial respiratory chain compensating for disabled complex I and the benefit Ndi1 brings toward retardation of Parkinson's disease.


Assuntos
Complexo I de Transporte de Elétrons/fisiologia , Doença de Parkinson/terapia , Proteínas de Saccharomyces cerevisiae/uso terapêutico , Animais , Complexo I de Transporte de Elétrons/uso terapêutico , Terapia Genética , Humanos , Proteínas Mitocondriais , Doença de Parkinson/etiologia , Quinona Redutases/fisiologia
15.
Biochim Biophys Acta ; 1757(5-6): 708-14, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16581014

RESUMO

Defects of complex I are involved in many human mitochondrial diseases, and therefore we have proposed to use the NDI1 gene encoding a single subunit NADH dehydrogenase of Saccharomyces cerevisiae for repair of respiratory activity. The yeast NDI1 gene was successfully introduced into mammalian cell lines. The expressed NDI1 protein was correctly targeted to the matrix side of the inner mitochondrial membranes, was fully functional and restored the NADH oxidase activity to the complex I-deficient cells. The NDI1-transduced cells were more resistant to complex I inhibitors and diminished production of reactive oxygen species induced by rotenone. It was further shown that the NDI1 protein can be functionally expressed in tissues such as skeletal muscles and the brain of rodents, which scarcely induced an inflammatory response. The use of NDI1 as a potential molecular therapy for complex I-deficient diseases is briefly discussed, including the proposed animal model.


Assuntos
Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/genética , Terapia Genética , Doenças Mitocondriais/tratamento farmacológico , NADH Desidrogenase/genética , Proteínas de Saccharomyces cerevisiae/genética , Animais , Encéfalo/metabolismo , Humanos , Doenças Mitocondriais/genética , Membranas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , NADH Desidrogenase/biossíntese , NADH Desidrogenase/fisiologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia , Proteínas de Saccharomyces cerevisiae/biossíntese , Desacopladores/farmacologia
16.
Toxicol Sci ; 95(1): 196-204, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17038483

RESUMO

Administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to mice and nonhuman primates causes a parkinsonian disorder characterized by a loss of dopamine-producing neurons in the substantia nigra and corresponding motor deficits. MPTP has been proposed to exert its neurotoxic effects through a variety of mechanisms, including inhibition of complex I of the mitochondrial respiratory chain, displacement of dopamine from vesicular stores, and formation of reactive oxygen species from mitochondrial or cytosolic sources. However, the mechanism of MPTP-induced neurotoxicity is still a matter of debate. Recently, we reported that the yeast single-subunit nicotinamide adenine dinucleotide (reduced) dehydrogenase (NDI1) is resistant to rotenone, a complex I inhibitor that produces a parkinsonian syndrome in rats, and that overexpression of NDI1 in SK-N-MC cells prevents the toxicity of rotenone. In this study, we used viral-mediated overexpression of NDI1 in SK-N-MC cells and animals to determine the relative contribution of complex I inhibition in the toxicity of MPTP. In cell culture, NDI1 overexpression abolished the toxicity of 1-methyl-4-phenylpyridinium, the active metabolite of MPTP. Overexpression of NDI1 through stereotactic administration of a viral vector harboring the NDI1 gene into the substantia nigra protected mice from both the neurochemical and behavioral deficits elicited by MPTP. These data identify inhibition of complex I as a requirement for dopaminergic neurodegeneration and subsequent behavioral deficits produced by MPTP. Furthermore, combined with reports of a complex I defect in Parkinson's disease (PD) patients, the present study affirms the utility of MPTP in understanding the molecular mechanisms underlying dopaminergic neurodegeneration in PD.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Dopamina/metabolismo , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Intoxicação por MPTP/metabolismo , Transtornos das Habilidades Motoras/metabolismo , NADH Desidrogenase/biossíntese , Proteínas de Saccharomyces cerevisiae/biossíntese , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , Animais , Comportamento Animal , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dependovirus/genética , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Terapia Genética , Vetores Genéticos , Humanos , Intoxicação por MPTP/induzido quimicamente , Intoxicação por MPTP/patologia , Intoxicação por MPTP/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Atividade Motora/efeitos dos fármacos , Transtornos das Habilidades Motoras/induzido quimicamente , Transtornos das Habilidades Motoras/patologia , Transtornos das Habilidades Motoras/prevenção & controle , NADH Desidrogenase/genética , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transfecção
17.
FEBS Lett ; 580(26): 6105-8, 2006 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-17055488

RESUMO

Using rat dopaminergic and human neuroblastoma cell lines transduced with the NDI1 gene encoding the internal NADH dehydrogenase (Ndi1) from Saccharomyces cerevisiae, we investigated reactive oxygen species (ROS) generation caused by complex I inhibition. Incubation of non-transduced cells with rotenone elicited oxidative damage to mitochondrial DNA as well as lipid peroxidation. In contrast, oxidative stress was significantly decreased when the cells were transduced with NDI1. Furthermore, mitochondria from the NDI1-transduced cells showed a suppressed rate of ROS formation by the complex I inhibitors. We conclude that the Ndi1 enzyme is able to suppress ROS overproduction from defective complex I.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , NADH Desidrogenase/fisiologia , Animais , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , DNA Mitocondrial , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo , Subunidades Proteicas , Ratos , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia , Proteínas de Saccharomyces cerevisiae/genética , Transdução Genética
18.
Rejuvenation Res ; 9(2): 191-7, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16706641

RESUMO

The proton-translocating NADH-quinone oxidoreductase (complex I) is one of five enzyme complexes in the oxidative phosphorylation system in mammalian mitochondria. Complex I is composed of 46 different subunits, 7 of which are encoded by mitochondrial DNA. Defects of complex I are involved in many human mitochondrial diseases; therefore, the authors proposed to use the NDI1 gene encoding a single subunit NADH dehydrogenase of Saccharomyces cerevisiae for repair of respiratory activity. The yeast NDI1 gene was successfully introduced into 10 mammalian cell lines (two of which were complex I-deficient mutants). The expressed Ndi1 protein was correctly targeted to the matrix side of the inner mitochondrial membranes, was fully functional, and restored the NADH oxidase activity to the complex I-deficient cells. The NDI1-transduced cells were more resistant to complex I inhibitors and diminished production of reactive oxygen species. It was further shown that the Ndi1 protein can be functionally expressed in tissues such as skeletal muscles and brain of rodents. The Ndi1 expression scarcely induced an inflammatory response as assessed by hematoxylin and eosin (H&E) staining. The Ndi1 protein expressed in the substantia nigra (SN) elicited protective effects against neurodegeneration caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment. The Ndi1 protein has a great potential as a molecular remedy for complex I deficiencies.


Assuntos
Complexo I de Transporte de Elétrons , NADH Desidrogenase/genética , Proteínas de Saccharomyces cerevisiae/genética , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/uso terapêutico , Animais , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Encefalomiopatias Mitocondriais , Músculo Esquelético/metabolismo , NADH Desidrogenase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/farmacologia
19.
J Neurosci ; 23(34): 10756-64, 2003 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-14645467

RESUMO

Exposure of rats to the pesticide and complex I inhibitor rotenone reproduces features of Parkinson's disease, including selective nigrostriatal dopaminergic degeneration and alpha-synuclein-positive cytoplasmic inclusions (Betarbet et al., 2000; Sherer et al., 2003). Here, we examined mechanisms of rotenone toxicity using three model systems. In SK-N-MC human neuroblastoma cells, rotenone (10 nm to 1 microm) caused dose-dependent ATP depletion, oxidative damage, and death. To determine the molecular site of action of rotenone, cells were transfected with the rotenone-insensitive single-subunit NADH dehydrogenase of Saccharomyces cerevisiae (NDI1), which incorporates into the mammalian ETC and acts as a "replacement" for endogenous complex I. In response to rotenone, NDI1-transfected cells did not show mitochondrial impairment, oxidative damage, or death, demonstrating that these effects of rotenone were caused by specific interactions at complex I. Although rotenone caused modest ATP depletion, equivalent ATP loss induced by 2-deoxyglucose was without toxicity, arguing that bioenergetic defects were not responsible for cell death. In contrast, reducing oxidative damage with antioxidants, or by NDI1 transfection, blocked cell death. To determine the relevance of rotenone-induced oxidative damage to dopaminergic neuronal death, we used a chronic midbrain slice culture model. In this system, rotenone caused oxidative damage and dopaminergic neuronal loss, effects blocked by alpha-tocopherol. Finally, brains from rotenone-treated animals demonstrated oxidative damage, most notably in midbrain and olfactory bulb, dopaminergic regions affected by Parkinson's disease. These results, using three models of increasing complexity, demonstrate the involvement of oxidative damage in rotenone toxicity and support the evaluation of antioxidant therapies for Parkinson's disease.


Assuntos
Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/fisiopatologia , Rotenona/toxicidade , Trifosfato de Adenosina/deficiência , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/toxicidade , Humanos , Técnicas In Vitro , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/patologia , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/patologia , Ratos , Ratos Endogâmicos Lew , Tempo
20.
Neurosci Lett ; 585: 171-6, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25481764

RESUMO

Leber's hereditary optic neuropathy (LHON) is an inherited disorder affecting the retinal ganglion cells (RGCs) and their axons that lead to the loss of central vision. This study is aimed at evaluating the LHON symptoms in rats administered with rotenone microspheres into the superior colliculus (SC). Optical coherence tomography (OCT) analysis showed substantial loss of retinal nerve fiber layer (RNFL) thickness in rotenone injected rats. Optokinetic testing in rotenone treated rats showed decrease in head-tracking response. Electrophysiological mapping of the SC surface demonstrated attenuation of visually evoked responses; however, no changes were observed in the ERG data. The progressive pattern of disease manifestation in rotenone administered rats demonstrated several similarities with human disease symptoms. These rats with LHON-like symptoms can serve as a model for future investigators to design and implement reliable tests to assess the beneficial effects of therapeutic interventions for LHON disease.


Assuntos
Modelos Animais de Doenças , Atrofia Óptica Hereditária de Leber/fisiopatologia , Rotenona , Animais , Eletrorretinografia , Potenciais Evocados Visuais , Humanos , Microesferas , Atrofia Óptica Hereditária de Leber/induzido quimicamente , Ratos , Colículos Superiores/fisiopatologia , Tomografia de Coerência Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA