RESUMO
A bacterial strain isolated from the oral cavity of a healthy dog revealed an unusual colony formation in nebular appearance on agar plates. The isolated bacterial strain was Gram-positive, spore-forming rod with peritrichous flagella, and grown under aerobic conditions, but unable to grow at 45 degrees C. The strain was tentatively classified as Paenibacillus alvei according to the biochemical properties and the 16S rRNA gene sequence. The isolate exhibits collective locomotion on solid agar plates. The bacterial motility was inhibited with EDTA and was restored by adding magnesium. We concluded that magnesium ion is essential for collective locomotion of P. alvei. This suggests that EDTA is useful for inhibition of biofilm formation.
Assuntos
DNA Bacteriano/análise , Cães/microbiologia , Bactérias Gram-Positivas Formadoras de Endosporo/isolamento & purificação , Boca/microbiologia , RNA Ribossômico 16S/análise , Animais , Quelantes/farmacologia , Ácido Edético/farmacologia , Bactérias Gram-Positivas Formadoras de Endosporo/classificação , Bactérias Gram-Positivas Formadoras de Endosporo/genética , Magnésio/fisiologia , Dados de Sequência Molecular , RNA Ribossômico 16S/genéticaRESUMO
Polar flagellated Pseudomonas aeruginosa PAO1 demonstrated extensive spreading growth in 2 days on 1.5% agar medium. Such spreading growth of P. aeruginosa PAO1 strains was absent on Luria-Bertani 1.5% agar medium, but remarkable on Davis minimal synthetic agar medium (especially that containing 0.8% sodium citrate and 1.5% Eiken agar) under aerobic 37 degrees C conditions. Analyses using isogenic mutants and complementation transformants showed that bacterial flagella and rhamnolipid contributed to the surface-spreading behavior. On the other hand, a type IV pilus-deficient pilA mutant did not lose the spreading growth activity. Flagella staining of PAO1 T cells from the frontal edge of a spreading colony showed unipolar and normal-sized rods with one or two flagella. Thus, the polar flagellate P. aeruginosa PAO1 T appears to swarm on high-agar medium by producing biosurfactant rhamnolipid and without differentiation into an elongated peritrichous hyperflagellate.
Assuntos
Ágar , Fímbrias Bacterianas/fisiologia , Flagelos/fisiologia , Pseudomonas aeruginosa/fisiologia , Ágar/química , Meios de Cultura , Fímbrias Bacterianas/genética , Flagelos/genética , Pseudomonas aeruginosa/genéticaRESUMO
Anaerobiosis of Pseudomonas aeruginosa in infected organs is now gaining attention as a unique physiological feature. After anaerobic cultivation of P. aeruginosa wild type strain PAO1 T, we noticed an unexpectedly expanding colony on a 1.5% agar medium. The basic factors involved in this spreading growth were investigated by growing the PAO1 T strain and its isogenic mutants on a Davis high-agar minimal synthetic medium under various experimental conditions. The most promotive environment for this spreading growth was an O(2)-depleted 8% CO(2) condition. From mutational analysis of this spreading growth, flagella and type IV pili were shown to be ancillary factors for this bacterial activity. On the other hand, a rhamnolipid-deficient rhlA mutant TR failed to exhibit spreading growth on a high-agar medium. Complementation of the gene defect of the mutant TR with a plasmid carrying the rhlAB operon resulted in the restoration of the spreading growth. In addition, an external supply of rhamnolipid or other surfactants (surfactin from Bacillus subtilis or artificial product Tween 80) also restored the spreading growth of the mutant TR. Such activity of surfactants on bacterial spreading on a hard-agar medium was unique to P. aeruginosa under CO(2)-rich anaerobic conditions.