RESUMO
We identified in a cohort of patients with frontotemporal dementia (n = 481) or amyotrophic lateral sclerosis (n = 147), 10 index patients carrying a TBK1 loss of function mutation reducing TBK1 expression by 50%. Here, we describe the clinical and pathological characteristics of the 10 index patients and six of their affected relatives carrying a TBK1 mutation. Six TBK1 carriers were diagnosed with frontotemporal dementia, seven with amyotrophic lateral sclerosis, one with both clinical phenotypes and two with dementia unspecified. The mean age at onset of all 16 TBK1 carriers was 62.1 ± 8.9 years (range 41-73) with a mean disease duration of 4.7 ± 4.5 years (range 1-13). TBK1 carriers with amyotrophic lateral sclerosis had shorter disease duration than carriers with frontotemporal dementia. Six of seven TBK1 carriers were diagnosed with the behavioural variant of frontotemporal dementia, presenting predominantly as disinhibition. Memory loss was an important associated symptom in the initial phase of the disease in all but one of the carriers with frontotemporal dementia. Three of the patients with amyotrophic lateral sclerosis exhibited pronounced upper motor neuron symptoms. Overall, neuroimaging displayed widespread atrophy, both symmetric and asymmetric. Brain perfusion single-photon emission computed tomography or fluorodeoxyglucose-positron emission tomography showed asymmetric and predominantly frontotemporal involvement. Neuropathology in two patients demonstrated TDP-43 type B pathology. Further, we compared genotype-phenotype data of TBK1 carriers with frontotemporal dementia (n = 7), with those of frontotemporal dementia patients with a C9orf72 repeat expansion (n = 65) or a GRN mutation (n = 52) and with frontotemporal dementia patients (n = 259) negative for mutations in currently known causal genes. TBK1 carriers with frontotemporal dementia had a later age at onset (63.3 years) than C9orf72 carriers (54.3 years) (P = 0.019). In clear contrast with TBK1 carriers, GRN carriers were more often diagnosed with the language variant than the behavioural variant, and presented in case of the diagnosis of behavioural variant, more often than TBK1 carriers with apathy as the predominant characteristic (P = 0.004). Also, TBK1 carriers exhibited more often extrapyramidal symptoms than C9orf72 carriers (P = 0.038). In conclusion, our study identified clinical differences between the TBK1, C9orf72 and GRN carriers, which allows us to formulate guidelines for genetic diagnosis. After a negative result for C9orf72, patients with both frontotemporal dementia and amyotrophic lateral sclerosis should be tested first for mutations in TBK1. Specifically in frontotemporal dementia patients with early memory difficulties, a relatively late age at onset or extrapyramidal symptoms, screening for TBK1 mutations should be considered.
Assuntos
Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Heterozigoto , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas/genética , Adulto , Idoso , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/epidemiologia , Bélgica/epidemiologia , Proteína C9orf72 , Estudos de Coortes , Feminino , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Linhagem , ProgranulinasRESUMO
Mutations in the gene coding for Sequestosome 1 (SQSTM1) have been genetically associated with amyotrophic lateral sclerosis (ALS) and Paget disease of bone. In the present study, we analyzed the SQSTM1 coding sequence for mutations in an extended cohort of 1,808 patients with frontotemporal lobar degeneration (FTLD), ascertained within the European Early-Onset Dementia consortium. As control dataset, we sequenced 1,625 European control individuals and analyzed whole-exome sequence data of 2,274 German individuals (total n = 3,899). Association of rare SQSTM1 mutations was calculated in a meta-analysis of 4,332 FTLD and 10,240 control alleles. We identified 25 coding variants in FTLD patients of which 10 have not been described. Fifteen mutations were absent in the control individuals (carrier frequency <0.00026) whilst the others were rare in both patients and control individuals. When pooling all variants with a minor allele frequency <0.01, an overall frequency of 3.2 % was calculated in patients. Rare variant association analysis between patients and controls showed no difference over the whole protein, but suggested that rare mutations clustering in the UBA domain of SQSTM1 may influence disease susceptibility by doubling the risk for FTLD (RR = 2.18 [95 % CI 1.24-3.85]; corrected p value = 0.042). Detailed histopathology demonstrated that mutations in SQSTM1 associate with widespread neuronal and glial phospho-TDP-43 pathology. With this study, we provide further evidence for a putative role of rare mutations in SQSTM1 in the genetic etiology of FTLD and showed that, comparable to other FTLD/ALS genes, SQSTM1 mutations are associated with TDP-43 pathology.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Degeneração Lobar Frontotemporal/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica , Animais , Estudos de Coortes , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Europa (Continente) , Feminino , Degeneração Lobar Frontotemporal/patologia , Humanos , Cooperação Internacional , Masculino , Metanálise como Assunto , Pessoa de Meia-Idade , Proteína Sequestossoma-1RESUMO
Over the last years, genome-wide studies consistently showed an increased burden of rare copy number variants (CNVs) in schizophrenia patients, supporting the "common disease, rare variant" hypothesis in at least a subset of patients. We hypothesize that in families with a high burden of disease, and thus probably a high genetic load influencing disease susceptibility, rare CNVs might be involved in the etiology of schizophrenia. We performed a genome-wide CNV analysis in the index patients of eight families with multiple schizophrenia affected members, and consecutively performed a detailed family analysis for the most relevant CNVs. One index patient showed a DRD5 containing duplication. A second index patient presented with an NRXN1 containing deletion and two adjacent duplications containing MYT1L and SNTG2. Detailed analysis in the subsequent families showed segregation of the identified CNVs. With this study we show the importance of screening high burden families for rare CNVs, which will not only broaden our knowledge concerning the molecular genetic mechanisms involved in schizophrenia but also allow the use of the obtained genetic data to provide better clinical care to these families in general and to non-symptomatic causal CNV carriers in particular.
Assuntos
Variações do Número de Cópias de DNA , Esquizofrenia/genética , Adulto , Idoso , Proteínas de Ligação ao Cálcio , Moléculas de Adesão Celular Neuronais/genética , Saúde da Família , Feminino , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Proteínas Musculares/genética , Proteínas do Tecido Nervoso/genética , Moléculas de Adesão de Célula Nervosa , Linhagem , Biossíntese de Proteínas , Receptores de Dopamina D5/genética , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: Autosomal dominant dopa-responsive dystonia (AD-DRD) is caused by a biochemical defect primarily resulting from guanosine triphosphate cyclohydrolase 1 gene (GCH1) mutations. Few families have been reported without mutations in GCH1. METHODS: Genome-wide linkage analysis and positional cloning to identify the genetic defect in a Belgian AD-DRD family was carried out. RESULTS AND CONCLUSION: In this study, we report on the identification and characterization of a novel 24-kb deletion spanning exon 1 and the 5' regulatory region of GCH1 causing a wide spectrum of motor and nonmotor symptoms in a large Belgian AD-DRD family. This large-scale deletion of regulatory sequences leads to decreased GCH1 activity in all carriers, most probably resulting from allelic loss of transcription. We mapped the breakpoints of this deletion to the nucleotide level, allowing the development of a straightforward polymerase chain reaction assay for fast, efficient detection of this large deletion, which will prove valuable for preimplantation genetic diagnosis.
Assuntos
Distonia/genética , GTP Cicloidrolase/genética , Regiões Promotoras Genéticas/genética , Deleção de Sequência/genética , Adulto , Bélgica , Mapeamento Cromossômico , Dopaminérgicos/uso terapêutico , Distonia/tratamento farmacológico , Distonia/etiologia , Saúde da Família , Feminino , Ligação Genética , Estudo de Associação Genômica Ampla , Humanos , Levodopa/uso terapêutico , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
In a genome-wide association study of frontotemporal lobar degeneration with pathological inclusions of TAR DNA-binding protein, significant association was obtained with three single nucleotide polymorphisms at 7p21.3, in a region encompassing the gene TMEM106B. This study also suggested a potential modifying effect of TMEM106B on disease since the association was strongest in progranulin mutation carriers. Further, the risk effect seemed to correlate with increased TMEM106B expression in patients. In the present study, we sought to replicate these three findings using an independent Flanders-Belgian cohort of primarily clinically diagnosed patients with frontotemporal lobar degeneration (n = 288). We were able to confirm the association with TMEM106B with a P-value of 0.008 for rs1990622, the top marker from the genome-wide association study [odds ratio 0.75 (95% confidence interval 0.61-0.93)]. Further, high-density single nucleotide polymorphism mapping suggested that the association was solely driven by the gene TMEM106B. Homozygous carriers of the TMEM106B protective alleles had a 50% reduced risk of developing frontotemporal lobar degeneration. However, we were unable to detect a modifying effect of the TMEM106B single nucleotide polymorphisms on onset age in progranulin mutation carriers belonging to an extended, clinical and pathological well-documented founder family segregating a progranulin null mutation. Also, we could not observe significant differences in messenger RNA expression between patients and control individuals in lymphoblast cell lines and in brain frontal cortex. In conclusion, we replicated the genetic TMEM106B association in a primarily clinically diagnosed cohort of patients with frontotemporal lobar degeneration from Flanders-Belgium. Additional studies are needed to unravel the molecular role of TMEM106B in disease onset and pathogenesis.
Assuntos
Degeneração Lobar Frontotemporal/diagnóstico , Degeneração Lobar Frontotemporal/genética , Predisposição Genética para Doença , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único/genética , Idade de Início , Idoso , Estudos de Coortes , Feminino , Lobo Frontal/patologia , Degeneração Lobar Frontotemporal/patologia , Regulação da Expressão Gênica/fisiologia , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Desequilíbrio de Ligação , Linfócitos/metabolismo , Linfócitos/patologia , Masculino , Pessoa de Meia-IdadeRESUMO
Frontotemporal dementia (FTD) with ubiquitin-immunoreactive neuronal inclusions (both cytoplasmic and nuclear) of unknown nature has been linked to a chromosome 17q21 region (FTDU-17) containing MAPT (microtubule-associated protein tau). FTDU-17 patients have consistently been shown to lack a tau-immunoreactive pathology, a feature characteristic of FTD with parkinsonism linked to mutations in MAPT (FTDP-17). Furthermore, in FTDU-17 patients, mutations in MAPT and genomic rearrangements in the MAPT region have been excluded by both genomic sequencing and fluorescence in situ hybridization on mechanically stretched chromosomes. Here we demonstrate that FTDU-17 is caused by mutations in the gene coding for progranulin (PGRN), a growth factor involved in multiple physiological and pathological processes including tumorigenesis. Besides the production of truncated PGRN proteins due to premature stop codons, we identified a mutation within the splice donor site of intron 0 (IVS0 + 5G > C), indicating loss of the mutant transcript by nuclear degradation. The finding was made within an extensively documented Belgian FTDU-17 founder family. Transcript and protein analyses confirmed the absence of the mutant allele and a reduction in the expression of PGRN. We also identified a mutation (c.3G > A) in the Met1 translation initiation codon, indicating loss of PGRN due to lack of translation of the mutant allele. Our data provide evidence that PGRN haploinsufficiency leads to neurodegeneration because of reduced PGRN-mediated neuronal survival. Furthermore, in a Belgian series of familial FTD patients, PGRN mutations were 3.5 times more frequent than mutations in MAPT, underscoring a principal involvement of PGRN in FTD pathogenesis.
Assuntos
Cromossomos Humanos Par 17/genética , Demência/genética , Lobo Frontal/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Mutação/genética , Lobo Temporal/fisiopatologia , Ubiquitina/metabolismo , Bélgica , Análise Mutacional de DNA , Demência/fisiopatologia , Lobo Frontal/metabolismo , Ligação Genética/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mapeamento Físico do Cromossomo , Progranulinas , Sítios de Splice de RNA/genética , Lobo Temporal/metabolismoRESUMO
OBJECTIVE: Mutations that lead to a loss of progranulin (PGRN) explain a considerable portion of the occurrence of frontotemporal lobar degeneration. We tested a biomarker allowing rapid detection of a loss of PGRN. METHODS: We used an enzyme-linked immunosorbent assay to measure in serum the PGRN protein levels of six affected and eight unaffected carriers from within an extended Belgian founder family segregating the null mutation IVS1+5G>C. Further, we measured serum PGRN levels in 2 patients with another null mutation (a Met1 and a frameshift mutation), in 4 patients carrying a predicted pathogenic missense mutation and in 5 patients carrying a benign missense polymorphism, in 9 unaffected noncarrier relatives, and in 22 community controls. RESULTS: Serum PGRN levels were reduced in both affected and unaffected null mutation carriers compared with noncarrier relatives (p(exact) < 0.0001), and allowed perfect discrimination between carriers and noncarriers (sensitivity: 1.0; 1 - specificity: 0.0). Serum PGRN levels in Cys139Arg and Arg564Cys mutation carriers were significantly lower than in controls, but greater than in null mutation carriers, fitting the hypothesis of partial loss of function caused by these missense mutations. As expected, levels for carriers of benign missense polymorphisms were not significantly different from controls. INTERPRETATION: Our results indicate that the serum PGRN level is a reliable biomarker for diagnosing and early detection of frontotemporal lobar degeneration caused by PGRN null mutations, and provided the first in vivo evidence that at least some missense mutations in PGRN may lead to a (partial) loss of PGRN.
Assuntos
Biomarcadores/sangue , Demência/sangue , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Idoso , Idoso de 80 Anos ou mais , Arginina/genética , Cisteína/genética , Demência/genética , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , ProgranulinasRESUMO
We determined the prevalence of mutations in two major functional domains of the leucine-rich repeat kinase 2 gene (LRRK2) in Belgian Parkinson's disease (PD) patients (N=304) of which 18.1% were familial PD patients. Ten patients were heterozygous for five different missense mutations (3.29%) of whom six carried the same mutation p.R1441C (1.97%). All six p.R1441C carriers were familial PD patients explaining 10.7% of familial PD in the Belgian patient group. Moreover, they shared a common disease haplotype of 21 consecutive markers in a region of 438 kb, suggesting that they are distant descendants of a single common ancestor. Clinically, p.R1441C carriers had typical levodopa-responsive parkinsonism with tremor as the most common presenting feature. Their age at onset was highly variable and ranged from 39 to 73 years, suggesting the influence of modifying factors. The remaining four patients were heterozygous each for a novel missense mutation located in the Roc or kinase domain. The pathogenic nature of these mutations remains to be determined, though we have genetic evidence that at least some represent rare but benign variants rather than causal mutations. The latter observation indicates that prudence is needed in diagnostic testing of LRRK2 in PD patients. Functional data should underlie a conclusion on the pathogenic nature of some mutations that have not been conclusively linked to disease.
Assuntos
Efeito Fundador , Mutação/genética , Doença de Parkinson/genética , Proteínas Serina-Treonina Quinases/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Sequência de Aminoácidos , Bélgica , Feminino , Haplótipos , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linhagem , Proteínas Serina-Treonina Quinases/química , Alinhamento de SequênciaRESUMO
Null mutations in the progranulin gene (GRN, PGRN) were recently identified as the causal mechanism underlying frontotemporal dementia (FTD) with ubiquitin-positive brain pathology linked to chromosome 17 (FTDU-17). In a Belgian and French FTD series comprising 332 patients, we reported 13 PGRN null mutations which were mainly nonsense and frameshift mutations resulting in premature stop codons. Here we report in the same patient series three missense mutations of which two (c.743C>T, p.Pro248Leu and c.1294C>T, p.Arg432Cys) were predicted in silico to severely affect protein folding and/or processing leading to PGRN protein haploinsufficiency. In addition, we observed three sequence variations in the 5' regulatory region that might potentially affect PGRN transcription activity. Our findings extend the mutation spectrum in PGRN leading to loss of functional PGRN as the basis for FTD.
Assuntos
Demência/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutação de Sentido Incorreto , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Estudos de Casos e Controles , Sequência Conservada , Análise Mutacional de DNA , Demência/metabolismo , Demência/patologia , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Repetições de Microssatélites , Pessoa de Meia-Idade , Dados de Sequência Molecular , Progranulinas , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de ProteínaRESUMO
BACKGROUND: Progranulin gene (PGRN) haploinsufficiency was recently associated with ubiquitin-positive frontotemporal lobar degeneration linked to chromosome 17q21 (FTLDU-17). OBJECTIVE: To assess whether PGRN genetic variability contributed to other common neurodegenerative brain diseases, such as Alzheimer disease (AD) or Parkinson disease (PD). DESIGN: Mutation analysis of PGRN. SETTING: Memory Clinic of the Middelheim General Hospital. Patients We analyzed 666 Belgian patients with AD and 255 with PD. MAIN OUTCOME MEASURES: Results of PGRN sequencing, PGRN transcript analysis, short tandem repeat genotyping, and neuropathologic analysis. RESULTS: We identified 2 patients with AD and 1 patient with PD who carried the null mutation IVS0 + 5G>C, which we reported earlier in an extensively characterized Belgian founder family, DR8, segregating FTLDU. Postmortem pathologic diagnosis of the patient with PD revealed both FTLDU and Lewy body pathologic features. In addition, we identified in PGRN only 1 other null mutation, the nonsense mutation p.Arg535X, in 1 patient with probable AD. However, in vitro analysis predicted a PGRN C-truncated protein, although it remains to be elucidated if this shortened transcript leads to haploinsufficiency. CONCLUSIONS: Our mutation data indicated that null mutations are rare in patients with AD (3/666 = 0.45%) and PD (1/255 = 0.39%). Also, AD and PD clinical diagnoses in patients who carry PGRN null mutations likely result from etiologic heterogeneity rather than PGRN haploinsufficiency.
Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Fatores Etários , Idoso , Doença de Alzheimer/epidemiologia , Autopsia , Bélgica/epidemiologia , Encéfalo/patologia , Cromossomos Humanos Par 17/genética , Códon sem Sentido/genética , Análise Mutacional de DNA , Feminino , Efeito Fundador , Variação Genética , Genótipo , Heterozigoto , Humanos , Imuno-Histoquímica , Doença por Corpos de Lewy/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Doença de Parkinson/epidemiologia , Linhagem , Progranulinas , Sequências de Repetição em Tandem/genética , Ubiquitina/metabolismoRESUMO
Importance: Patients carrying a C9orf72 repeat expansion leading to frontotemporal dementia and/or amyotrophic lateral sclerosis have highly variable ages at onset of disease, suggesting the presence of modifying factors. Objective: To provide clinical-based evidence for disease anticipation in families carrying a C9orf72 repeat expansion by analyzing age at onset, disease duration, and age at death in successive generations. Design, Setting, and Participants: This cohort study was performed from June 16, 2000, to June 1, 2016, in 36 extended Belgian families in which a C9orf72 repeat expansion was segregating. The generational effect on age at onset, disease duration, and age at death was estimated using a mixed effects Cox proportional hazards regression model, including random-effects terms for within-family correlation and kinship. Time until disease onset or last examination, time from disease onset until death or last examination, or age at death was collected for for 244 individuals (132 proven or obligate C9orf72 carriers), of whom 147 were clinically affected (89 proven or obligate C9orf72 carriers). Main Outcomes and Measures: Generational effect on age at onset, disease duration, and age at death. Results: Among the 111 individuals with age at onset available (66 men and 45 women; mean [SD] age, 57.2 [9.1] years), the mean (SD) age at onset per generation (from earliest-born to latest-born generation) was 62.5 (8.3), 57.1 (8.2), 54.6 (10.2), and 49.3 (7.5) years. Censored regression analysis on all affected and unaffected at-risk relatives confirmed a decrease in age at onset in successive generations (P < .001). No generational effect was observed for disease duration or age at death. Conclusions and Relevance: The clinical data provide supportive evidence for the occurrence of disease anticipation in families carrying a C9orf72 repeat expansion by means of a decrease in age at onset across successive generations. This finding may help clinicians decide from which age onward it may be relevant to clinically follow presymptomatic individuals who carry a C9orf72 repeat expansion.
Assuntos
Esclerose Lateral Amiotrófica/genética , Expansão das Repetições de DNA/genética , Demência Frontotemporal/genética , Linhagem , Proteínas/genética , Idade de Início , Idoso , Proteína C9orf72 , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos de Riscos ProporcionaisRESUMO
OBJECTIVE: To investigate the frequency of glucocerebrosidase (GBA) mutations in a Flanders-Belgian Parkinson's disease (PD) patient cohort and to assess genotype-phenotype correlations. METHODS: We performed an in-depth sequencing of all coding exons of GBA in 266 clinically well-characterized PD patients and 536 healthy control individuals. RESULTS: We identified rare, heterozygous GBA mutations in 12 PD patients (4.5%) and in 2 healthy control individuals (0.37%), confirming the genetic association of GBA mutations with PD in the Flanders-Belgian population (p<0.001). The patient carriers had a more severe Unified Parkinson's Disease Rating Scale (UPDRS) motor score than non-carriers. Also, GBA mutation status was a significant, independent predictor for the presence of dementia (OR=12.43, 95% CI: 2.27-68.14. p=0.004). Genetic association of PD with the common p.E326K and p.T369M variants in GBA was absent. CONCLUSION: In our Flanders-Belgian cohort, carrier status of a heterozygous GBA mutation was a strong genetic risk factor for PD. The GBA mutation frequency of 4.5% is comparable to previously reported data in other European PD patient cohorts. Furthermore, our clinical data suggest a more severe motor phenotype and a strong predisposition to dementia in GBA mutation carriers.
Assuntos
Demência/genética , Predisposição Genética para Doença , Glucosilceramidase/genética , Doença de Parkinson/genética , Idoso , Bélgica , Estudos de Coortes , Demência/complicações , Éxons , Feminino , Estudos de Associação Genética , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Doença de Parkinson/complicações , Fenótipo , Fatores de Risco , Índice de Gravidade de DoençaRESUMO
OBJECTIVE: To generate a clinical and pathologic phenotype of patients carrying rare loss-of-function mutations in ABCA7, identified in a Belgian Alzheimer patient cohort and in an autosomal dominant family. METHODS: We performed a retrospective review of available data records, medical records, results of CSF analyses and neuroimaging studies, and neuropathology data. RESULTS: The mean onset age of the mutation carriers (n = 22) was 73.4 ± 8.4 years with a wide age range of 36 (54-90) years, which was independent of APOE genotype and cerebrovascular disease. The mean disease duration was 5.7 ± 3.0 years (range 2-12 years). A positive family history was recorded for 10 carriers (45.5%). All patient carriers except one presented with memory complaints. The 4 autopsied brains showed typical immunohistochemical changes of late-onset Alzheimer disease. CONCLUSIONS: All patients carrying a loss-of-function mutation in ABCA7 exhibited a classical Alzheimer disease phenotype, though with a striking wide onset age range, suggesting the influence of unknown modifying factors.
Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Mutação , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Biomarcadores/líquido cefalorraquidiano , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Transtornos Cerebrovasculares/complicações , Transtornos Cerebrovasculares/diagnóstico por imagem , Transtornos Cerebrovasculares/genética , Transtornos Cerebrovasculares/patologia , Progressão da Doença , Feminino , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Estudos RetrospectivosRESUMO
BACKGROUND: ABCA7 was identified as a risk gene for Alzheimer's disease in genome-wide association studies (GWAS). It was one of the genes most strongly associated with risk of Alzheimer's disease in a Belgian cohort. Using targeted resequencing, we investigated ABCA7 in this cohort with the aim to directly detect rare and common variations in this gene associated with Alzheimer's disease pathogenesis. METHODS: We did massive parallel resequencing of ABCA7 after HaloPlex target enrichment of the exons, introns, and regulatory regions in 772 unrelated patients with Alzheimer's disease (mean age at onset 74·6 years [SD 8·9]) recruited at two memory clinics in Flanders, Belgium, and 757 geographically matched community-dwelling controls (mean age at inclusion 73·9 years [8·0]). After bioinformatic processing, common variants were analysed with conditional logistic regression and rare variant association analysis was done in Variant Association Tools. To explore an observed founder effect, additional unrelated patients with Alzheimer's disease (n=183, mean age at onset 78·8 years [SD 6·0]) and control individuals (n=265, mean age at inclusion 56·9 years [10·8]) from the same cohort who had not been included in massive parallel resequencing because of insufficient biosamples were screened for the ABCA7 frameshift mutation Glu709fs with Sanger sequencing. The effect of loss-of-function mutations on ABCA7 expression was investigated with quantitative real-time PCR in post-mortem brains of patients (n=3) and control individuals (n=4); nonsense mediated mRNA decay was investigated in lymphoblast cell lines from three predicted loss-of-function mutation carriers from the cohort of 772 patients with Alzheimer's disease. FINDINGS: An intronic low-frequency variant rs78117248 (minor allele frequency 3·8% in 58 patients with Alzheimer's disease and in controls 1·8% in 28 controls) showed strongest association with Alzheimer's disease (odds ratio 2·07, 95% CI 1·31-3·27; p=0·0016), and remained significant after conditioning for the GWAS top single nucleotide polymorphisms rs3764650, rs4147929, and rs3752246 (2·00, 1·22-3·26; p=0·006). We identified an increased frequency of predicted loss-of-function mutations in the patients compared with the controls (relative risk 4·03, 95% CI 1·75-9·29; p=0·0002). One frameshift mutation (Glu709fs) showed a founder effect in the study population, and was found to segregate with disease in a family with autosomal dominant inheritance of Alzheimer's disease. Expression of ABCA7 was reduced in the two carriers of loss-of-function mutations found only in patients with Alzheimer's disease (Glu709fs and Trp1214*) compared with four non-carrier controls (relative expression 0·45, 95% CI 0·25-0·84; p=0·002) and in lymphoblast cell lines from three carriers of Glu709fs compared with those from two non-carrier controls. INTERPRETATION: We propose that a low-frequency variant can explain the association between ABCA7 and Alzheimer's disease, and the evidence of loss-of-function mutations in this risk gene suggests that partial loss-of-function of ABCA7 could be a potential pathogenetic mechanism of Alzheimer's disease. FUNDING: Belgian Science Policy Office Interuniversity Attraction Poles program P7/16, Alzheimer Research Foundation, King Baudouin Foundation AB Fund, Methusalem Excellence Program initiative of the Flemish Government, Flanders Impulse Program on Networks for Dementia Research, Research Foundation Flanders, Agency for Innovation by Science and Technology Flanders, University of Antwerp Research Fund, and European Union's Seventh Framework Programme for Research, Technological development and Demonstration (AgedBrainSYSBIO).
Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Doença de Alzheimer/genética , Frequência do Gene/genética , Análise de Sequência de DNA/métodos , Idoso , Idoso de 80 Anos ou mais , Bélgica , Estudos de Coortes , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Polimorfismo de Nucleotídeo ÚnicoRESUMO
OBJECTIVE: To assess the genetic contribution of TBK1, a gene implicated in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and FTD-ALS, in Belgian FTD and ALS patient cohorts containing a significant part of genetically unresolved patients. METHODS: We sequenced TBK1 in a hospital-based cohort of 482 unrelated patients with FTD and FTD-ALS and 147 patients with ALS and an extended Belgian FTD-ALS family DR158. We followed up mutation carriers by segregation studies, transcript and protein expression analysis, and immunohistochemistry. RESULTS: We identified 11 patients carrying a loss-of-function (LOF) mutation resulting in an overall mutation frequency of 1.7% (11/629), 1.1% in patients with FTD (5/460), 3.4% in patients with ALS (5/147), and 4.5% in patients with FTD-ALS (1/22). We found 1 LOF mutation, p.Glu643del, in 6 unrelated patients segregating with disease in family DR158. Of 2 mutation carriers, brain and spinal cord was characterized by TDP-43-positive pathology. The LOF mutations including the p.Glu643del mutation led to loss of transcript or protein in blood and brain. CONCLUSIONS: TBK1 LOF mutations are the third most frequent cause of clinical FTD in the Belgian clinically based patient cohort, after C9orf72 and GRN, and the second most common cause of clinical ALS after C9orf72. These findings reinforce that FTD and ALS belong to the same disease continuum.
Assuntos
Demência Frontotemporal/diagnóstico , Demência Frontotemporal/genética , Mutação/genética , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Bélgica/epidemiologia , Estudos de Coortes , Feminino , Demência Frontotemporal/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , LinhagemRESUMO
Homozygous mutations in exon 2 of TREM2, a gene involved in Nasu-Hakola disease, can cause frontotemporal dementia (FTD). Moreover, a rare TREM2 exon 2 variant (p.R47H) was reported to increase the risk of Alzheimer's disease (AD) with an odds ratio as strong as that for APOEε4. We systematically screened the TREM2 coding region within a Belgian study on neurodegenerative brain diseases (1216 AD patients, 357 FTD patients, and 1094 controls). We observed an enrichment of rare variants across TREM2 in both AD and FTD patients compared to controls, most notably in the extracellular IgV-set domain (relative risk = 3.84 [95% confidence interval = 1.29-11.44]; p = 0.009 for AD; relative risk = 6.19 [95% confidence interval = 1.86-20.61]; p = 0.0007 for FTD). None of the rare variants individually reached significant association, but the frequency of p.R47H was increased ~ 3-fold in both AD and FTD patients compared to controls, in line with previous reports. Meta-analysis including 11 previously screened AD cohorts confirmed the association of p.R47H with AD (p = 2.93×10(-17)). Our data corroborate and extend previous findings to include an increased frequency of rare heterozygous TREM2 variations in AD and FTD, and show that TREM2 variants may play a role in neurodegenerative diseases in general.
Assuntos
Doença de Alzheimer/genética , Demência Frontotemporal/genética , Variação Genética , Heterozigoto , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/epidemiologia , Bélgica/epidemiologia , Estudos de Coortes , Feminino , Demência Frontotemporal/epidemiologia , Humanos , Masculino , Metanálise como Assunto , Pessoa de Meia-Idade , Estudos ProspectivosRESUMO
C9orf72 G4C2 repeat expansion is a major cause of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Its role in Alzheimer's disease (AD) is less clear. We assessed the prevalence of G4C2 pathogenic repeat expansions in Flanders-Belgian patients with clinical AD or mild cognitive impairment (MCI). In addition, we studied the effect of non-pathogenic G4C2 repeat length variability on susceptibility to AD, and on AD cerebrospinal fluid (CSF) biomarker levels. A pathogenic repeat expansion was identified in 5 of 1217 AD patients (frequency <1%). No pathogenic expansions were observed in patients with MCI (n = 200) or control individuals (n = 1119). Nonpathogenic repeat length variability was not associated with AD, risk of conversion to AD in MCI individuals, or CSF biomarker levels. We conclude that pathogenic C9orf72 G4C2 repeat expansions can be detected in clinical AD patients and could act as a contributor to AD pathogenesis. Non-pathogenic repeat length variability did not affect risk of AD or MCI, nor AD biomarker levels in CSF, indicating that C9orf72 is not a direct AD risk factor.
Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/genética , Expansão das Repetições de DNA/genética , Proteínas/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/epidemiologia , Bélgica/epidemiologia , Proteína C9orf72 , Disfunção Cognitiva/epidemiologia , Estudos de Coortes , Feminino , Humanos , Masculino , Estudos ProspectivosRESUMO
OBJECTIVE: To characterize patients with frontotemporal lobar degeneration (FTLD) with a repeat expansion mutation in the gene C9orf72, and to determine whether there are differences in the clinical presentation compared with FTLD carriers of a mutation in GRN or MAPT or with patients with FTLD without mutation. DESIGN: Patient series. SETTING: Dementia clinics in Flanders, Belgium. PATIENTS: Two hundred seventy-five genetically and phenotypically thoroughly characterized patients with FTLD. MAIN OUTCOME MEASURES: Clinical and demographic characteristics of 26 C9orf72 expansion carriers compared with patients with a GRN or MAPT mutation, as well as patients with familial and sporadic FTLD without mutation. RESULTS: C9orf72 expansion carriers developed FTLD at an early age (average, 55.3 years; range, 42-69 years), significantly earlier than in GRN mutation carriers or patients with FTLD without mutation. Mean survival (6.2 years; range, 1.5-17.0 years) was similar to other patient groups. Most developed behavioral variant frontotemporal dementia (85%), with disinhibited behavior as the prominent feature. Concomitant amyotrophic lateral sclerosis is a strong distinguishing feature for C9orf72 -associated FTLD. However, in most patients (73%), amyotrophic lateral sclerosis symptoms were absent. Compared with C9orf72 expansion carriers, nonfluent aphasia and limb apraxia were significantly more common in GRN mutation carriers. CONCLUSIONS: C9orf72 -associated FTLD most often presents with early-onset behavioral variant frontotemporal dementia with disinhibition as the prominent feature, with or without amyotrophic lateral sclerosis. Based on the observed genotype-phenotype correlations between the different FTLD syndromes and different genetic causes, we propose a decision tree to guide clinical genetic testing in patients clinically diagnosed as having FTLD.
Assuntos
Expansão das Repetições de DNA/genética , Degeneração Lobar Frontotemporal/genética , Triagem de Portadores Genéticos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas/genética , Proteínas tau/genética , Adulto , Idade de Início , Idoso , Bélgica/epidemiologia , Proteína C9orf72 , Estudos de Coortes , Feminino , Degeneração Lobar Frontotemporal/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , ProgranulinasRESUMO
VPS35 was recently identified as a novel autosomal dominant gene for Parkinson disease. In this study, we aimed to determine the contribution of simple and complex VPS35 variations to the genetic etiology of the spectrum of Lewy body disorders (LBD) in a Flanders-Belgian patient cohort (n = 677). We identified 3 novel missense variations in addition to 1 silent and 1 intronic variation predicted to activate a cryptic splice site, but no copy number variations. Despite the absence of these rare variations in the control group (n = 800), we could not attain convincing evidence for pathogenicity by segregation analysis or in silico predictions. Hence, our data do not support a major role for VPS35 variations in the genetic etiology of Lewy body disorders in the Flanders-Belgian population.
Assuntos
Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Variação Genética/genética , Doença por Corpos de Lewy/epidemiologia , Doença por Corpos de Lewy/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Transporte Vesicular/genética , Idoso de 80 Anos ou mais , Bélgica/epidemiologia , Marcadores Genéticos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores de RiscoRESUMO
Based on the substantial overlap in clinical and pathological characteristics of dementia with Lewy bodies (DLB) and Parkinson disease with dementia (PDD) with Alzheimer disease (AD) and Parkinson disease (PD) we hypothesized that these disorders might share underlying genetic factors. The contribution of both sequence and copy number variants (CNVs) in known AD and PD genes to the genetic etiology of DLB and PDD however is currently unclear. Therefore, we performed a gene-based mutation analysis of all major AD and PD genes in 99 DLB and 75 PDD patients, including familial and sporadic forms, from Flanders, Belgium. Also, copy number variants in APP, SNCA, and PARK2 were determined. In the AD genes we detected proven pathogenic missense mutations in PSEN1 and PSEN2, and 2 novel missense variants in PSEN2 and MAPT. In the PD genes we identified 1 SNCA duplication, the LRRK2 R1441C founder mutation and 4 novel heterozygous missense variants with unknown pathogenicity. Our results suggest a contribution of established AD and PD genes to the genetic etiology of DLB and PDD though to a limited extent. They do support the hypothesis of a genetic overlap between members of the Lewy body disease spectrum, but additional genes still have to exist.