RESUMO
Mutations in human ppa2 gene encoding mitochondrial inorganic pyrophosphatase (PPA2) result in the mitochondria malfunction in heart and brain and lead to early death. In comparison with its cytosolic counterpart, PPA2 of any species is a poorly characterized enzyme with a previously unknown 3D structure. We report here the crystal structure of PPA2 from yeast Ogataea parapolymorpha (OpPPA2), as well as its biochemical characterization. OpPPA2 is a dimer, demonstrating the fold typical for other eukaryotic Family I pyrophosphatases, including the human cytosolic enzyme. Cofactor Mg2+ ions found in OpPPA2 structure have similar coordination to most known Family I pyrophosphatases. Most of the residues associated with the pathological mutations in human PPA2 are conserved in OpPPA2, and their structural context suggests possible explanations for the effects of the mutations on the human enzyme. In this work, the mutant variant of OpPPA2, Met52Val, corresponding to the natural pathogenic variant Met94Val of human PPA2, is characterized. The obtained structural and biochemical data provide a step to understanding the structural basis of PPA2-associated pathologies.
RESUMO
Structure-function relationships are key to understanding enzyme mechanisms, controlling enzyme activities, and designing biocatalysts. Here, we investigate the functions of arginine residues in the active sites of pyridoxal-5'-phosphate (PLP)-dependent non-canonical d-amino acid transaminases, focusing on the analysis of a transaminase from Haliscomenobacter hydrossis. Our results show that the tandem of arginine residues R28* and R90, which form the conserved R-[RK] motif in non-canonical d-amino acid transaminases, not only facilitates effective substrate binding but also regulates the catalytic properties of PLP. Non-covalent interactions between residues R28*, R90, and Y147 strengthen the hydrogen bond between Y147 and PLP, thereby maintaining the reactivity of the cofactor. Next, the R90 residue contributes to the stability of the holoenzyme. Finally, the R90I substitution induces structural changes that lead to substrate promiscuity, as evidenced by the effective binding of substrates with and without the α-carboxylate group. This study sheds light on the structural determinants of the activity of non-canonical d-amino acid transaminases. Understanding the structural basis of the active site plasticity in the non-canonical transaminase from H. hydrossis, which is characterized by effective conversion of d-amino acids and α-keto acids, may help to tailor it for industrial applications.
Assuntos
Arginina , Domínio Catalítico , Fosfato de Piridoxal , Transaminases , Transaminases/metabolismo , Transaminases/química , Arginina/química , Arginina/metabolismo , Fosfato de Piridoxal/metabolismo , Fosfato de Piridoxal/química , Especificidade por Substrato , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Modelos MolecularesRESUMO
The development of biocatalysts requires reorganization of the enzyme's active site to facilitate the productive binding of the target substrate and improve turnover number at desired conditions. Pyridoxal-5'-phosphate (PLP) - dependent transaminases are highly efficient biocatalysts for asymmetric amination of ketones and keto acids. However, transaminases, being stereoselective enzymes, have a narrow substrate specificity due to the ordered structure of the active site and work only in neutral-alkaline media. Here, we investigated the d-amino acid transaminase from Aminobacterium colombiense, with the active site organized differently from that of the canonical d-amino acid transaminase from Bacillus sp. YM-1. Using a combination of site-directed mutagenesis, kinetic analysis, molecular modeling, and structural analysis we determined the active site residues responsible for substrate binding, substrate differentiation, thermostability of a functional dimer, and affecting the pH optimum. We demonstrated that the high specificity toward d-glutamate/α-ketoglutarate is due to the interactions of a γ-carboxylate group with K237 residue, while binding of other substrates stems from the effectiveness of their accommodation in the active site optimized for d-glutamate/α-ketoglutarate binding. Furthermore, we showed that the K237A substitution shifts the catalytic activity optimum to acidic pH. Our findings are useful for achieving target substrate specificity and demonstrate the potential for developing and optimizing transaminases for various applications.
Assuntos
Aminoácidos , Transaminases , Transaminases/metabolismo , Ácidos Cetoglutáricos , Ácido Glutâmico , Especificidade por Substrato , Cinética , Concentração de Íons de HidrogênioRESUMO
D-cycloserine inhibits pyridoxal-5'-phosphate (PLP)-dependent enzymes. Inhibition effect depend on organization of the active site and mechanism of the catalyzed reaction. D-cycloserine interacts with the PLP form of the enzyme similarly to the substrate (amino acid), and this interaction is predominantly reversible. Several products of the interaction of PLP with D-cycloserine are known. For some enzymes formation of a stable aromatic product - hydroxyisoxazole-pyridoxamine-5'-phosphate at certain pH - leads to irreversible inhibition. The aim of this work was to study the mechanism of D-cycloserine inhibition of the PLP-dependent D-amino acid transaminase from Haliscomenobacter hydrossis. Spectral methods revealed several products of interaction of D-cycloserine with PLP in the active site of transaminase: oxime between PLP and ß-aminooxy-D-alanine, ketimine between pyridoxamine-5'-phosphate and cyclic form of D-cycloserine, and pyridoxamine-5'-phosphate. Formation of hydroxyisoxazole-pyridoxamine-5'-phosphate was not observed. 3D structure of the complex with D-cycloserine was obtained using X-ray diffraction analysis. In the active site of transaminase, a ketimine adduct between pyridoxamine-5'-phosphate and D-cycloserine in the cyclic form was found. Ketimine occupied two positions interacting with different active site residues via hydrogen bonds. Using kinetic and spectral methods we have shown that D-cycloserine inhibition is reversible, and activity of the inhibited transaminase from H. hydrossis could be restored by adding excess of keto substrate or excess of cofactor. The obtained results confirm reversibility of the inhibition by D-cycloserine and interconversion of various adducts of D-cycloserine and PLP.
Assuntos
Aminoácidos , Transaminases , Transaminases/química , Ciclosserina/farmacologia , Ciclosserina/química , Piridoxamina/química , Fosfato de PiridoxalRESUMO
Enzymes with expanded substrate specificity are good starting points for the design of biocatalysts for target reactions. However, the structural basis of the expanded substrate specificity is still elusive, especially in the superfamily of pyridoxal-5'-phosphate-dependent transaminases, which are characterized by a conserved organization of both the active site and functional dimer. Here, we analyze the structure-function relationships in a non-canonical D-amino acid transaminase from Blastococcus saxobsidens, which is active towards D-amino acids and primary (R)-amines. A detailed study of the enzyme includes a kinetic analysis of its substrate scope and a structural analysis of the holoenzyme and its complex with phenylhydrazine-a reversible inhibitor and analogue of (R)-1-phenylethylamine-a benchmark substrate of (R)-selective amine transaminases. We suggest that the features of the active site of transaminase from B. saxobsidens, such as the flexibility of the R34 and R96 residues, the lack of bulky residues in the ß-turn at the entrance to the active site, and the short O-pocket loop, facilitate the binding of substrates with and without α-carboxylate groups. The proposed structural determinants of the expanded substrate specificity can be used for the design of transaminases for the stereoselective amination of keto compounds.
Assuntos
Aminoácidos , Transaminases , Transaminases/metabolismo , Especificidade por Substrato , Cinética , Fenetilaminas/metabolismoRESUMO
Acinetobacter baumannii is a critical priority nosocomial pathogen that produces a variety of capsular polysaccharides (CPSs), the primary receptors for specific depolymerase-carrying phages. In this study, the tailspike depolymerases (TSDs) encoded in genomes of six novel Friunaviruses, APK09, APK14, APK16, APK86, APK127v, APK128, and one previously described Friunavirus phage, APK37.1, were characterized. For all TSDs, the mechanism of specific cleavage of corresponding A. baumannii capsular polysaccharides (CPSs) was established. The structures of oligosaccharide fragments derived from K9, K14, K16, K37/K3-v1, K86, K127, and K128 CPSs degradation by the recombinant depolymerases have been determined. The crystal structures of three of the studied TSDs were obtained. A significant reduction in mortality of Galleria mellonella larvae infected with A. baumannii of K9 capsular type was shown in the example of recombinant TSD APK09_gp48. The data obtained will provide a better understanding of the interaction of phage-bacterial host systems and will contribute to the formation of principles of rational usage of lytic phages and phage-derived enzymes as antibacterial agents.
Assuntos
Acinetobacter baumannii , Bacteriófagos , Mariposas , Animais , Bacteriófagos/genética , Acinetobacter baumannii/metabolismo , Larva/microbiologia , Antibacterianos/metabolismoRESUMO
Ribonucleoside hydrolase C (RihC, EC 3.2.2.1, 3.2.2.2, 3.2.2.3, 3.2.2.7, 3.2.2.8) belongs to the family of ribonucleoside hydrolases Rih and catalyzes the cleavage of ribonucleosides to nitrogenous bases and ribose. RihC is one of the enzymes that are synthesized by lactobacilli in response to the presence of Klebsiella. To characterize this protein from Limosilactobacillus reuteri LR1, we cloned and expressed it. The activity of the enzyme was studied towards a wide range of substrates, including ribonucleosides, deoxyribonucleosides as well as an arabinoside. It was shown that the enzyme is active only with ribonucleosides and arabinoside, with the best substrate being uridine. The thermal stability of this enzyme was studied, and its crystal structure was obtained, which demonstrated the tetrameric architecture of the enzyme and allowed to shed light on a correlation between its structure and enzymatic activity. Comprehensive comparisons of all known RihC structures, both existing crystal structures and computed model structures from various species, were made, allowing for the identification of structural motifs important for enzyme functioning.
Assuntos
Limosilactobacillus reuteri , Ribonucleosídeos , Uridina , Hidrolases de Éster CarboxílicoRESUMO
Pyridoxal-5'-phosphate (PLP)-dependent transaminases are highly efficient biocatalysts for stereoselective amination. D-amino acid transaminases can catalyze stereoselective transamination producing optically pure D-amino acids. The knowledge of substrate binding mode and substrate differentiation mechanism in D-amino acid transaminases comes down to the analysis of the transaminase from Bacillus subtilis. However, at least two groups of D-amino acid transaminases differing in the active site organization are known today. Here, we present a detailed study of D-amino acid transaminase from the gram-negative bacterium Aminobacterium colombiense with a substrate binding mode different from that for the transaminase from B. subtilis. We study the enzyme using kinetic analysis, molecular modeling, and structural analysis of holoenzyme and its complex with D-glutamate. We compare the multipoint binding of D-glutamate with the binding of other substrates, D-aspartate and D-ornithine. QM/MM MD simulation reveals that the substrate can act as a base and its proton can be transferred from the amino group to the α-carboxylate group. This process occurs simultaneously with the nucleophilic attack of the PLP carbon atom by the nitrogen atom of the substrate forming gem-diamine at the transimination step. This explains the absence of the catalytic activity toward (R)-amines that lack an α-carboxylate group. The obtained results clarify another substrate binding mode in D-amino acid transaminases and underpinned the substrate activation mechanism.
Assuntos
Aminoácidos , Transaminases , Transaminases/metabolismo , Ácido Glutâmico , Cinética , Bacillus subtilis/metabolismo , Fosfato de Piridoxal/metabolismo , Catálise , Especificidade por SubstratoRESUMO
Pyridoxal-5'-phosphate (PLP)-dependent transaminases are key enzymes of amino acid metabolism in cells and remarkable biocatalysts of stereoselective amination for process chemistry applications. As cofactor-dependent enzymes, transaminases are prone to cofactor leakage. Here we discuss the holoenzyme-apoenzyme interconversion and the kinetics of PLP incorporation into the apo form of a PLP-dependent transaminase from Haliscomenobacter hydrossis. PLP binding to the apoenzyme was slow in buffer, but was accelerated in the presence of substrates. Two crystal structures of the apoenzyme were obtained: the directly obtained apoenzyme (PDB ID: 7P8O) and the one obtained by soaking crystals of the holoenzyme in a phenylhydrazine solution (PDB ID: 8YRU). The mechanism of PLP association with the apoenzyme was proposed on the basis of structural analysis of these apo forms. Three rearrangement steps, including (I) anchoring of the PLP via the phosphate group, (II) displacement of two loops, and (III) Schiff-bonding between the PLP and the ε-amino group of the catalytic lysine residue, reconstituted the active holo form of the transaminase from H. hydrossis. The results obtained allowed us to determine in the active site a permanent part and elements that are assembled by PLP, these findings may be useful for transaminase engineering for biocatalysis.