Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arthritis Rheum ; 64(5): 1540-50, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22139865

RESUMO

OBJECTIVE: Inflammation in the bone microenvironment stimulates osteoclast differentiation, resulting in uncoupling of resorption and formation. Mechanisms contributing to the inhibition of osteoblast function in inflammatory diseases, however, have not been elucidated. Rheumatoid arthritis (RA) is a prototype of an inflammatory arthritis that results in focal loss of articular bone. The paucity of bone repair in inflammatory diseases such as RA raises compelling questions regarding the impact of inflammation on bone formation. The aim of this study was to establish the mechanisms by which inflammation regulates osteoblast activity. METHODS: We characterized an innovative variant of a murine model of arthritis in which inflammation is induced in C57BL/6J mice by transfer of arthritogenic K/BxN serum and allowed to resolve. RESULTS: In the setting of resolving inflammation, bone resorption ceased and appositional osteoblast-mediated bone formation was induced, resulting in repair of eroded bone. Resolution of inflammation was accompanied by striking changes in the expression of regulators of the Wnt/ß-catenin pathway, which is critical for osteoblast differentiation and function. Down-regulation of the Wnt antagonists secreted frizzled-related protein 1 (sFRP1) and sFRP2 during the resolution phase paralleled induction of the anabolic and pro-matrix mineralization factors Wnt10b and DKK2, demonstrating the role of inflammation in regulating Wnt signaling. CONCLUSION: Repair of articular bone erosion occurs in the setting of resolving inflammation, accompanied by alterations in the Wnt signaling pathway. These data imply that in inflammatory diseases that result in persistent articular bone loss, strict control of inflammation may not be achieved and may be essential for the generation of an anabolic microenvironment that supports bone formation and repair.


Assuntos
Artrite Experimental/metabolismo , Inflamação/metabolismo , Osteoblastos/metabolismo , Osteogênese/fisiologia , Proteínas Wnt/biossíntese , Via de Sinalização Wnt , Fosfatase Ácida/metabolismo , Animais , Artrite Experimental/imunologia , Artrite Experimental/patologia , Regeneração Óssea/fisiologia , Proteínas Relacionadas à Folistatina/metabolismo , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Isoenzimas/metabolismo , Articulações/metabolismo , Articulações/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteoblastos/patologia , Osteoclastos/metabolismo , Osteoclastos/patologia , Fosfatase Ácida Resistente a Tartarato
2.
J Bone Miner Res ; 32(3): 461-472, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27676131

RESUMO

Articular bone erosion in rheumatoid arthritis (RA) is mediated by the interaction between inflammation and pathways regulating bone metabolism. Inflammation promotes osteoclastogenesis and also inhibits osteoblast function, further contributing to the persistence of erosions. MicroRNAs (miRNAs) are important regulators of skeletal remodeling and play a role in RA pathogenesis. We therefore determined the expression of miRNAs in inflamed synovial tissue and the role they play in pathways regulating osteoblast and osteoclast function. Using the serum transfer mouse model of RA in C57BL/6 mice, we performed Fluidigm high-throughput qPCR-based screening of miRNAs from nonarthritic and arthritic mice. Global gene expression profiling was also performed on Affymetrix microarrays from these same synovial samples. miRNA and mRNA expression profiles were subjected to comparative bioinformatics. A total of 536 upregulated genes and 417 downregulated genes were identified that are predicted targets of miRNAs with reciprocal expression changes. Gene ontology analysis of these genes revealed significant enrichment in skeletal pathways. Of the 22 miRNAs whose expression was most significantly changed (p < 0.01) between nonarthritic and arthritic mice, we identified their targets that both inhibit and promote bone formation. These miRNAs are predicted to target Wnt and BMP signaling pathway components. We validated miRNA array findings and demonstrated that secretion of miR-221-3p in exosomes was upregulated by synovial fibroblasts treated with the proinflammatory cytokine TNF. Overexpression of miR-221-3p suppressed calvarial osteoblast differentiation and mineralization in vitro. These results suggest that miRNAs derived from inflamed synovial tissues may regulate signaling pathways at erosion sites that affect bone loss and potentially also compensatory bone formation. © 2016 American Society for Bone and Mineral Research.


Assuntos
Artrite Reumatoide/genética , Osso e Ossos/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais/genética , Membrana Sinovial/metabolismo , Animais , Artrite Reumatoide/patologia , Osso e Ossos/patologia , Diferenciação Celular/genética , Células Cultivadas , Regulação para Baixo/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Perfilação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Osteoblastos/metabolismo , Osteoblastos/patologia , Membrana Sinovial/patologia , Sinoviócitos/metabolismo
3.
Biomaterials ; 25(2): 295-304, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14585717

RESUMO

A model shed antigen, ovalbumin (OVA), was co-delivered with polymeric biomaterial carrier vehicles in C57BL6 mice to test whether the presence of the biomaterial acted as an adjuvant in the immune response towards the associated antigen. The biomaterials tested were non-biodegradable polystyrene microparticles and biodegradable 50:50 or 75:25 poly(lactic-co-glycolic acid) (PLGA) microparticles or scaffolds. For each biomaterial carrier vehicle, to assess the resulting time-dependent systemic humoral immune response towards the co-delivered OVA, the OVA-specific IgG concentration and isotypes (IgG2a or IgG1, indicating a predominant Th1 or Th2 response, respectively) were determined using ELISA. OVA co-delivered with biomaterial carrier vehicles supported a moderate humoral immune response that was maintained for the 18-week duration of the experiment. This humoral immune response was primarily Th2 helper T cell-dependent as indicated by the predominant IgG1 isotype. Furthermore, this humoral immune response was not material chemistry-dependent within the material set tested here. With the presence of the biomaterial resulting in an enhancement of the humoral immune response to co-delivered antigen, it appears that the biomaterial acts as an adjuvant in the development of an adaptive immune response to co-delivered antigen.


Assuntos
Formação de Anticorpos/imunologia , Materiais Biocompatíveis/metabolismo , Ovalbumina/imunologia , Engenharia Tecidual , Animais , Formação de Anticorpos/fisiologia , Masculino , Camundongos , Ovalbumina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA