Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Mol Psychiatry ; 27(4): 2197-2205, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35145231

RESUMO

Tissue plasminogen activator (tPA) is a serine protease expressed in several brain regions and reported to be involved in the control of emotional and cognitive functions. Nevertheless, little is known about the structure-function relationships of these tPA-dependent behaviors. Here, by using a new model of constitutive tPA-deficient mice (tPAnull), we first show that tPA controls locomotor activity, spatial cognition and anxiety. To investigate the brain structures involved in these tPA-dependent behavioral phenotypes, we next generated tPAflox mice allowing conditional tPA deletion (cKO) following stereotaxic injections of adeno-associated virus driving Cre-recombinase expression (AAV-Cre-GFP). We demonstrate that tPA removal in the dentate gyrus of the hippocampus induces hyperactivity and partial spatial memory deficits. Moreover, the deletion of tPA in the central nucleus of the amygdala, but not in the basolateral nucleus, induces hyperactivity and reduced anxiety-like level. Importantly, we prove that these behaviors depend on the tPA present in the adult brain and not on neurodevelopmental disorders. Also, interestingly, our data show that tPA from Protein kinase-C delta-positive (PKCδ) GABAergic interneurons of the lateral/ capsular part of adult mouse central amygdala controls emotional functions through neuronal activation of the medial central amygdala. Together, our study brings new data about the critical central role of tPA in behavioral modulations in adult mice.


Assuntos
Núcleo Central da Amígdala , Proteína Quinase C-delta/metabolismo , Animais , Ansiedade , Transtornos de Ansiedade , Núcleo Central da Amígdala/metabolismo , Neurônios GABAérgicos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ativador de Plasminogênio Tecidual/genética , Ativador de Plasminogênio Tecidual/metabolismo
2.
BMC Biol ; 20(1): 218, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199089

RESUMO

BACKGROUND: Perineuronal nets (PNNs) are specialized extracellular matrix structures mainly found around fast-spiking parvalbumin (FS-PV) interneurons. In the adult, their degradation alters FS-PV-driven functions, such as brain plasticity and memory, and altered PNN structures have been found in neurodevelopmental and central nervous system disorders such as Alzheimer's disease, leading to interest in identifying targets able to modify or participate in PNN metabolism. The serine protease tissue-type plasminogen activator (tPA) plays multifaceted roles in brain pathophysiology. However, its cellular expression profile in the brain remains unclear and a possible role in matrix plasticity through PNN remodeling has never been investigated. RESULT: By combining a GFP reporter approach, immunohistology, electrophysiology, and single-cell RT-PCR, we discovered that cortical FS-PV interneurons are a source of tPA in vivo. We found that mice specifically lacking tPA in FS-PV interneurons display denser PNNs in the somatosensory cortex, suggesting a role for tPA from FS-PV interneurons in PNN remodeling. In vitro analyses in primary cultures of mouse interneurons also showed that tPA converts plasminogen into active plasmin, which in turn, directly degrades aggrecan, a major structural chondroitin sulfate proteoglycan (CSPG) in PNNs. CONCLUSIONS: We demonstrate that tPA released from FS-PV interneurons in the central nervous system reduces PNN density through CSPG degradation. The discovery of this tPA-dependent PNN remodeling opens interesting insights into the control of brain plasticity.


Assuntos
Parvalbuminas , Ativador de Plasminogênio Tecidual , Agrecanas/metabolismo , Animais , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Matriz Extracelular/metabolismo , Fibrinolisina/metabolismo , Interneurônios/fisiologia , Camundongos , Parvalbuminas/metabolismo , Plasminogênio/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo
3.
J Neurosci ; 40(8): 1778-1787, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31953371

RESUMO

Increase in blood-brain barrier (BBB) permeability is a crucial step in neuroinflammatory processes. We previously showed that N Methyl D Aspartate Receptor (NMDARs), expressed on cerebral endothelial cells forming the BBB, regulate immune cell infiltration across this barrier in the mouse. Here, we describe the mechanism responsible for the action of NMDARs on BBB permeabilization. We report that mouse CNS endothelial NMDARs display the regulatory GluN3A subunit. This composition confers to NMDARs' unconventional properties: these receptors do not induce Ca2+ influx but rather show nonionotropic properties. In inflammatory conditions, costimulation of human brain endothelial cells by NMDA agonists (NMDA or glycine) and the serine protease tissue plasminogen activator, previously shown to potentiate NMDAR activity, induces metabotropic signaling via the Rho/ROCK pathway. This pathway leads to an increase in permeability via phosphorylation of myosin light chain and subsequent shrinkage of human brain endothelial cells. Together, these data draw a link between NMDARs and the cytoskeleton in brain endothelial cells that regulates BBB permeability in inflammatory conditions.SIGNIFICANCE STATEMENT The authors describe how NMDARs expressed on endothelial cells regulate blood-brain barrier function via myosin light chain phosphorylation and increase in permeability. They report that these non-neuronal NMDARs display distinct structural, functional, and pharmacological features than their neuronal counterparts.


Assuntos
Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Miosinas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Linhagem Celular , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Células Endoteliais/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Camundongos , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Permeabilidade , Fosforilação/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/agonistas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Ativador de Plasminogênio Tecidual/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
4.
Brain ; 143(10): 2957-2972, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32893288

RESUMO

Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is a neuropsychiatric disease characterized by an antibody-mediated autoimmune response against NMDAR. Recent studies have shown that anti-NMDAR antibodies are involved in the pathophysiology of the disease. However, the upstream immune and inflammatory processes responsible for this pathogenic response are still poorly understood. Here, we immunized mice against the region of NMDA receptor containing the N368/G369 amino acids, previously implicated in a pathogenic response. This paradigm induced encephalopathy characterized by blood-brain barrier opening, periventricular T2-MRI hyperintensities and IgG deposits into the brain parenchyma. Two weeks after immunization, mice developed clinical symptoms reminiscent of encephalitis: anxiety- and depressive-like behaviours, spatial memory impairment (without motor disorders) and increased sensitivity to seizures. This response occurred independently of overt T-cell recruitment. However, it was associated with B220+ (B cell) infiltration towards the ventricles, where they differentiated into CD138+ cells (plasmocytes). Interestingly, these B cells originated from peripheral lymphoid organs (spleen and cervical lymphoid nodes). Finally, blocking the B-cell response using a depleting cocktail of antibodies reduced the severity of symptoms in encephalitis mice. This study demonstrates that the B-cell response can lead to an autoimmune reaction against NMDAR that drives encephalitis-like behavioural impairments. It also provides a relevant platform for dissecting encephalitogenic mechanisms in an animal model, and enables the testing of therapeutic strategies targeting the immune system in anti-NMDAR encephalitis.


Assuntos
Autoanticorpos/sangue , Linfócitos B/metabolismo , Encefalite/sangue , Doença de Hashimoto/sangue , Proteínas do Tecido Nervoso/toxicidade , Animais , Autoanticorpos/imunologia , Linfócitos B/imunologia , Encefalite/induzido quimicamente , Encefalite/imunologia , Doença de Hashimoto/induzido quimicamente , Doença de Hashimoto/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/imunologia , Receptores de N-Metil-D-Aspartato/imunologia
5.
BMC Geriatr ; 21(1): 73, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482740

RESUMO

BACKGROUND: The "Program of Research on the Integration of Services for the Maintenance of Autonomy" (PRISMA-7) and "Emergency room evaluation and recommendations" (ER2) are both clinical tools used in Québec Emergency Departments (EDs) for screening of older ED users at higher risk of poor outcomes, such as prolonged length of stay (LOS) in EDs and in hospital. The study aimed to: 1) examine whether the PRISMA-7 and ER2 risk levels were associated with length of stays in ED and hospital, as well as hospital admission; and 2) compare the criteria performance (i.e., sensitivity, specificity, positive predictive value, negative predictive value, likelihood ratios and area under receiver operating characteristic curve) of the PRISMA-7 and ER2 high-risk levels for these three ED adverse events in Québec older patients visiting ED on a stretcher. METHODS: A total of 1905 older patients who visited the ED of the Jewish General Hospital (Montreal, Québec, Canada) on stretchers were recruited in this prospective observational cohort. Upon their ED arrival, PRISMA-7 and ER2 were performed. The outcomes were LOS in ED and in hospital, and hospital admission. RESULTS: The PRISMA-7 and ER2 risk levels were associated with length of stay in ED and hospital as well as with hospital admission. Prolonged stays and higher hospitalization rates were associated with high-risk levels, whereas those in low-risk level groups had significantly shorter LOS and a lower rate of hospital admission (P < 0.006). While performance measures were poor for both assessment tools, ER2 had a greater prognostic testing accuracy compared with PRISMA-7. CONCLUSION: PRISMA-7 and ER2 were both associated with incidental short-term ED adverse events but their overall prognostic testing accuracy was low, suggesting that they cannot be used as prognostic tools for this purpose.


Assuntos
Serviço Hospitalar de Emergência , Avaliação Geriátrica , Idoso , Canadá , Humanos , Tempo de Internação , Prognóstico , Estudos Prospectivos , Quebeque/epidemiologia
6.
Cereb Cortex ; 27(10): 4783-4796, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27613436

RESUMO

In humans, spatial cognition and navigation impairments are a frequent situation during physiological and pathological aging, leading to a dramatic deterioration in the quality of life. Despite the discovery of neurons with location-specific activity in rodents, that is, place cells in the hippocampus and later on grid cells in the entorhinal cortex (EC), the molecular mechanisms underlying spatial cognition are still poorly known. Our present data bring together in an unusual combination 2 molecules of primary biological importance: a major neuronal excitatory receptor, N-methyl-D-aspartate receptor (NMDAR), and an extracellular protease, tissue plasminogen activator (tPA), in the control of spatial navigation. By using tPA-deficient mice and a structure-selective pharmacological approach, we demonstrate that the tPA-dependent NMDAR signaling potentiation in the EC plays a key and selective role in the encoding and the subsequent use of distant landmarks during spatial learning. We also demonstrate that this novel function of tPA in the EC is reduced during aging. Overall, these results argue for the concept that encoding of proximal versus distal landmarks is mediated not only by different anatomical pathways but also by different molecular mechanisms, with the tPA-dependent potentiation of NMDAR signaling in the EC that plays an important role.


Assuntos
Córtex Entorrinal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Envelhecimento , Animais , Cálcio/metabolismo , Feminino , Hipocampo/metabolismo , Masculino , Camundongos Knockout , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Ativador de Plasminogênio Tecidual/deficiência , Ativador de Plasminogênio Tecidual/metabolismo
7.
Glia ; 65(12): 1961-1975, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28850711

RESUMO

Myelination is a late developmental process regulated by a set of inhibitory and stimulatory factors, including extracellular matrix components. Accordingly, chondroitin sulfate proteoglycans (CSPGs) act as negative regulators of myelination processes. A disintegrin and metalloproteinase with thrombospondin motifs type 4 (ADAMTS-4) is an extracellular protease capable of degrading CSPGs. Although exogenous ADAMTS-4 has been proven to be beneficial in several models of central nervous system (CNS) injuries, the physiological functions of endogenous ADAMTS-4 remain poorly understood. We first used Adamts4/LacZ reporter mice to reveal that ADAMTS-4 is strongly expressed in the CNS, especially in the white matter, with a cellular profile restricted to mature oligodendrocytes. Interestingly, we evidenced an abnormal myelination in Adamts4-/- mice, characterized by a higher diameter of myelinated axons with a shifting g-ratio. Accordingly, lack of ADAMTS-4 is accompanied by motor deficits and disturbed nervous electrical activity. In conclusion, we demonstrate that ADAMTS-4 is a new marker of mature oligodendrocytes contributing to the myelination processes and thus to the control of motor capacities.


Assuntos
Proteína ADAMTS4/metabolismo , Transtornos dos Movimentos/genética , Oligodendroglia/metabolismo , Proteína ADAMTS4/genética , Animais , Animais Recém-Nascidos , Proteínas de Ligação ao Cálcio/metabolismo , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Corpo Caloso/ultraestrutura , Modelos Animais de Doenças , Potenciais Somatossensoriais Evocados/genética , Potenciais Somatossensoriais Evocados/fisiologia , Transtornos Neurológicos da Marcha/etiologia , Locomoção/genética , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Microscopia Eletrônica , Transtornos dos Movimentos/fisiopatologia , Proteína Básica da Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/patologia , Oligodendroglia/ultraestrutura , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Estatísticas não Paramétricas , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
8.
Stroke ; 48(9): 2574-2582, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28754830

RESUMO

BACKGROUND AND PURPOSE: Although the mechanisms that contribute to intracranial aneurysm (IA) formation and rupture are not totally elucidated, inflammation and matrix remodeling are incriminated. Because tPA (tissue-type plasminogen activator) controls both inflammatory and matrix remodeling processes, we hypothesized that tPA could be involved in the pathophysiology of IA. METHODS: Immunofluorescence analyses of tPA and its main substrate within the aneurysmal wall of murine and human samples were performed. We then compared the formation and rupture of IAs in wild-type, tPA-deficient and type 1 plasminogen activator inhibitor-deficient mice subjected to a model of elastase-induced IA. The specific contribution of vascular versus global tPA was investigated by performing hepatic hydrodynamic transfection of a cDNA encoding for tPA in tPA-deficient mice. The formation and rupture of IAs were monitored by magnetic resonance imaging tracking for 28 days. RESULTS: Immunofluorescence revealed increased expression of tPA within the aneurysmal wall. The number of aneurysms and their symptomatic ruptures were significantly lower in tPA-deficient than in wild-type mice. Conversely, they were higher in plasminogen activator inhibitor-deficient mice. The wild-type phenotype could be restored in tPA-deficient mice by selectively increasing circulating levels of tPA via hepatic hydrodynamic transfection of a cDNA encoding for tPA. CONCLUSIONS: Altogether, this preclinical study demonstrates that the tPA present in the blood stream is a key player of the formation of IAs. Thus, tPA should be considered as a possible new target for the prevention of IAs formation and rupture.


Assuntos
Aneurisma Roto/metabolismo , Aneurisma Intracraniano/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Adulto , Aneurisma Roto/diagnóstico por imagem , Animais , Feminino , Imunofluorescência , Humanos , Imuno-Histoquímica , Aneurisma Intracraniano/diagnóstico por imagem , Imageamento por Ressonância Magnética , Camundongos , Camundongos Knockout , Inibidor 1 de Ativador de Plasminogênio/genética , Ruptura Espontânea , Ativador de Plasminogênio Tecidual/genética
9.
Brain ; 139(Pt 9): 2406-19, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27435092

RESUMO

Multiple sclerosis is among the most common causes of neurological disability in young adults. Here we provide the preclinical proof of concept of the benefit of a novel strategy of treatment for multiple sclerosis targeting neuroendothelial N-methyl-D-aspartate glutamate receptors. We designed a monoclonal antibody against N-methyl-D-aspartate receptors, which targets a regulatory site of the GluN1 subunit of N-methyl-D-aspartate receptor sensitive to the protease tissue plasminogen activator. This antibody reverted the effect of tissue plasminogen activator on N-methyl-D-aspartate receptor function without affecting basal N-methyl-D-aspartate receptor activity (n = 21, P < 0.01). This antibody bound N-methyl-D-aspartate receptors on the luminal surface of neurovascular endothelium in human tissues and in mouse, at the vicinity of tight junctions of the blood-spinal cord barrier. Noteworthy, it reduced human leucocyte transmigration in an in vitro model of the blood-brain barrier (n = 12, P < 0.05). When injected during the effector phase of MOG-induced experimental autoimmune encephalomyelitis (n = 24), it blocked the progression of neurological impairments, reducing cumulative clinical score (P < 0.001) and mean peak score (P < 0.001). This effect was observed in wild-type animals but not in tissue plasminogen activator knock-out animals (n = 10). This therapeutic effect was associated to a preservation of the blood-spinal cord barrier (n = 6, P < 0.001), leading to reduced leucocyte infiltration (n = 6, P < 0.001). Overall, this study unveils a critical function of endothelial N-methyl-D-aspartate receptor in multiple sclerosis, and highlights the therapeutic potential of strategies targeting the protease-regulated site of N-methyl-D-aspartate receptor.


Assuntos
Barreira Hematoencefálica/metabolismo , Encefalomielite Autoimune Experimental/tratamento farmacológico , Antagonistas de Aminoácidos Excitatórios/farmacologia , Proteínas do Tecido Nervoso/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Ativador de Plasminogênio Tecidual/metabolismo , Animais , Células Endoteliais , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
Blood ; 123(21): 3354-63, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24553181

RESUMO

Interactions between platelet glycoprotein (Gp) IIb/IIIa and plasma proteins mediate platelet cross-linking in arterial thrombi. However, GpIIb/IIIa inhibitors fail to disperse platelet aggregates after myocardial infarction or ischemic stroke. These results suggest that stability of occlusive thrombi involves additional and as-yet-unidentified mechanisms. In the present study, we investigated the mechanisms driving platelet cross-linking during occlusive thrombus formation. Using computational fluid dynamic simulations and in vivo thrombosis models, we demonstrated that the inner structure of occlusive thrombi is heterogeneous and primarily determined by the rheological conditions that prevailed during thrombus growth. Unlike the first steps of thrombus formation, which are GpIIb/IIIa-dependent, our findings reveal that closure of the arterial lumen is mediated by GpIbα-von Willebrand Factor (VWF) interactions. Accordingly, disruption of platelet cross-linking using GpIbα-VWF inhibitors restored vessel patency and improved outcome in a mouse model of ischemic stroke, although the thrombi were resistant to fibrinolysis or traditional antithrombotic agents. Overall, our study demonstrates that disruption of GpIbα-VWF interactions restores vessel patency after occlusive thrombosis by specifically disaggregating the external layer of occlusive thrombi, which is constituted of platelet aggregates formed under very high shear rates.


Assuntos
Plaquetas/patologia , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Trombose/metabolismo , Trombose/patologia , Fator de von Willebrand/metabolismo , Animais , Benzofuranos , Plaquetas/metabolismo , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Hemorreologia , Masculino , Camundongos , Agregação Plaquetária , Mapas de Interação de Proteínas , Quinolinas
11.
Neurobiol Dis ; 66: 28-42, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24576594

RESUMO

Although tissue plasminogen activator (tPA) is known to promote neuronal remodeling in the CNS, no mechanism of how this plastic function takes place has been reported so far. We provide here in vitro and in vivo demonstrations that this serine protease neutralizes inhibitory chondroitin sulfate proteoglycans (CSPGs) by promoting their degradation via the direct activation of endogenous type 4 disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS-4). Accordingly, in a model of compression-induced spinal cord injury (SCI) in rats, we found that administration of either tPA or its downstream effector ADAMTS-4 restores the tPA-dependent activity lost after the SCI and thereby, reduces content of CSPGs in the spinal cord, a cascade of events leading to an improved axonal regeneration/sprouting and eventually long term functional recovery. This is the first study to reveal a tPA-ADAMTS-4 axis and its function in the CNS. It also raises the prospect of exploiting such cooperation as a therapeutic tool for enhancing recovery after acute CNS injuries.


Assuntos
Proteínas ADAM/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Pró-Colágeno N-Endopeptidase/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Ativador de Plasminogênio Tecidual/farmacologia , Proteína ADAMTS4 , Animais , Axônios/efeitos dos fármacos , Axônios/fisiologia , Células Cultivadas , Feminino , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Neurocam , Neuropeptídeos/farmacologia , Inibidor 1 de Ativador de Plasminogênio/farmacologia , Ratos , Ratos Wistar , Recuperação de Função Fisiológica , Inibidores de Serina Proteinase/farmacologia , Serpinas/farmacologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiopatologia , Compressão da Medula Espinal/tratamento farmacológico , Compressão da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Ativador de Plasminogênio Tecidual/antagonistas & inibidores , Neuroserpina
12.
JMIR Form Res ; 8: e55064, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717803

RESUMO

BACKGROUND: Health organizations face the critical task of executing and overseeing comprehensive health care. To address the challenges associated with this task, evidence-based dashboards have emerged as valuable tools. Since 2016, the regional health organizations of Quebec, Canada, have been responsible for ensuring implementation of the Quebec Alzheimer Plan (QAP), a provincial plan that aims to reinforce the capacity of primary care services to detect, diagnose, and treat persons with dementia. Despite the provincial scope of the QAP, the diverse material and human resources across regions introduce variability in the interest, utility, and specific needs associated with these dashboards. OBJECTIVE: The aim of this study was to assess the interest and utility of dashboards to support the QAP implementation, as well as to determine the needs for improving these aspects according to the perspectives of various types of professionals involved across regions. METHODS: An evaluative study using qualitative methods was conducted within a collaborative research approach involving different stakeholders, including the ministerial advisor and the four project managers responsible for supporting the implementation of the QAP, as well as researchers/scientific advisors. To support these organizations, we developed tailored, 2-page paper dashboards, detailing quantitative data on the prevalence of dementia, the use of health services by persons with dementia, and achievements and challenges of the QAP implementation in each organization's jurisdiction. We then conducted 23 focus groups with the managers and leading clinicians involved in the implementation of the QAP of each regional health organization. Real-time notes were taken using a structured observation grid. Content analysis was conducted according to different regions (organizations with university mandates or nearby organizations, labeled "university/peripheral"; organizations for which only part of the territory is in rural areas, labeled "mixed"; and organizations in remote or isolated areas, labeled "remote/isolated") and according to different types of participants (managers, leading clinicians, and other participants). RESULTS: Participants from organizations in all regions expressed interest in these dashboards and found them useful in several ways. However, they highlighted the need for indicators on orphan patients and other health care providers. Differences between regions were observed, particularly in the interest in continuity of care in university/peripheral regions and the need for diagnostic tools adapted to the culture in remote/isolated regions. CONCLUSIONS: These dashboards support the implementation of an Alzheimer Plan and contribute to the emergence of a learning health care system culture. This project allows each region to increase its monitoring capacity for the implementation of the QAP and facilitates reflection among individuals locally carrying out the implementation. The perspectives expressed will guide the preparation of the next iteration of the dashboards.

13.
J Neurosci ; 32(37): 12726-34, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22972996

RESUMO

Tissue plasminogen activator (tPA) is a serine protease with pleiotropic actions in the CNS, such as synaptic plasticity and neuronal death. Some effects of tPA require its interaction with the GluN1 subunit of the NMDA receptor (NMDAR), leading to a potentiation of NMDAR signaling. We have reported previously that the pro-neurotoxic effect of tPA is mediated through GluN2D subunit-containing NMDARs. Thus, the aim of the present study was to determine whether GluN2D subunit-containing NMDARs drive tPA-mediated cognitive functions. To address this issue, a strategy of immunization designed to prevent the in vivo interaction of tPA with NMDARs and GluN2D-deficient mice were used in a set of behavioral tasks. Altogether, our data provide the first evidence that tPA influences spatial memory through its preferential interaction with GluN2D subunit-containing NMDARs.


Assuntos
Ácido Glutâmico/metabolismo , Aprendizagem em Labirinto/fisiologia , Memória de Curto Prazo/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Percepção Espacial/fisiologia , Ativador de Plasminogênio Tecidual/metabolismo , Animais , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Subunidades Proteicas
14.
Stroke ; 44(7): 1988-96, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23743972

RESUMO

BACKGROUND AND PURPOSE: Our aim was to assess the spatiotemporal evolution of the cerebrovascular inflammation occurring after ischemic and hemorrhagic strokes using a recently developed, fast, and ultra-sensitive molecular MRI method. METHODS: We first assessed longitudinally the cerebrovascular inflammation triggered by collagenase-induced hemorrhage and by permanent/transient middle cerebral artery occlusion in mice, using MRI after injection of microparticles of iron oxide targeted to vascular cell adhesion molecule-1 (MPIOs-αVCAM-1). Thereafter, we used this method to study the anti-inflammatory effects of celecoxib, atorvastatin, and dipyridamole after stroke. RESULTS: Using multiparametric MRI, we demonstrated that the level and the kinetics of cerebrovascular VCAM-1 expression depend on several parameters, including stroke pathogenesis, the natural history of the disease, and the administration of inflammation-modulating drugs. Interestingly, in transient middle cerebral artery occlusion and intracranial hemorrhage models, VCAM-1 expression was maximal at 24 hours and almost returned to baseline 5 days after stroke onset. In contrast, after permanent middle cerebral artery occlusion, VCAM-1 overexpression was sustained between 24 hours and 5 days, and was particularly significant in the peri-infarct areas. Our results suggest that these perilesional areas expressing VCAM-1 constitute an inflammatory penumbra that is recruited by the ischemic core during the subacute phase. Using MPIOs-αVCAM-1-enhanced imaging, we also provided evidence that celecoxib and atorvastatin (but not dipyridamole) alleviate VCAM-1 overexpression after stroke and prevent formation of the inflammatory penumbra. CONCLUSIONS: MPIOs-αVCAM-1-enhanced imaging seems to be promising in the detection of individuals presenting with severe cerebrovascular responses after stroke, which could therefore benefit from anti-inflammatory treatments.


Assuntos
Infarto da Artéria Cerebral Média/patologia , Hemorragias Intracranianas/patologia , Imageamento por Ressonância Magnética/métodos , Molécula 1 de Adesão de Célula Vascular/metabolismo , Animais , Compostos Férricos , Aumento da Imagem/métodos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/etiologia , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/patologia , Hemorragias Intracranianas/induzido quimicamente , Hemorragias Intracranianas/tratamento farmacológico , Imageamento por Ressonância Magnética/instrumentação , Camundongos , Molécula 1 de Adesão de Célula Vascular/efeitos dos fármacos
15.
Fluids Barriers CNS ; 20(1): 11, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737775

RESUMO

BACKGROUND: Regulation of cerebral blood flow (CBF) directly influence brain functions and dysfunctions and involves complex mechanisms, including neurovascular coupling (NVC). It was suggested that the serine protease tissue-type plasminogen activator (tPA) could control CNV induced by whisker stimulation in rodents, through its action on N-methyl-D-Aspartate receptors (NMDARs). However, the origin of tPA and the location and mechanism of its action on NMDARs in relation to CNV remained debated. METHODS: Here, we answered these issues using tPANull mice, conditional deletions of either endothelial tPA (VECad-CreΔtPA) or endothelial GluN1 subunit of NMDARs (VECad-CreΔGluN1), parabioses between wild-type and tPANull mice, hydrodynamic transfection-induced deletion of liver tPA, hepatectomy and pharmacological approaches. RESULTS: We thus demonstrate that physiological concentrations of vascular tPA, achieved by the bradykinin type 2 receptors-dependent production and release of tPA from liver endothelial cells, promote NVC, through a mechanism dependent on brain endothelial NMDARs. CONCLUSIONS: These data highlight a new mechanism of regulation of NVC involving both endothelial tPA and NMDARs.


Assuntos
Acoplamento Neurovascular , Ativador de Plasminogênio Tecidual , Camundongos , Animais , N-Metilaspartato/farmacologia , Células Endoteliais/metabolismo , Encéfalo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Camundongos Knockout , Fígado/metabolismo
16.
Stroke ; 43(10): 2774-81, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22879098

RESUMO

BACKGROUND AND PURPOSE: Despite side effects including N-methyl-d-aspartate-mediated neurotoxicity, recombinant tissue-type plasminogen activator (rtPA) remains the only approved acute treatment for ischemic stroke. Memantine, used for treatment of Alzheimer disease, is an antagonist for N-methyl-d-aspartate receptors. We investigated whether memantine could be used as a neuroprotective adjunct therapy for rtPA-induced thrombolysis after stroke. METHODS: In vitro N-methyl-d-aspartate exposure, oxygen and glucose deprivation, and N-methyl-d-aspartate-mediated calcium videomicroscopy experiments were performed on murine cortical neurons in the presence of rtPA and memantine. The therapeutic safety of rtPA and memantine coadministration was evaluated in mouse models of thrombotic stroke and intracerebral hemorrhage. Ischemic and hemorrhagic volumes were assessed by MRI and neurological evaluation was performed by the string test and automated gait analysis. RESULTS: Our in vitro observations showed that memantine was able to prevent the proneurotoxic effects of rtPA in cultured cortical neurons. Although memantine did not alter the fibrinolytic activity of rtPA, our in vivo observations revealed that it blunted the noxious effects of delayed thrombolysis on lesion volumes and neurological deficits after ischemic stroke. In addition, memantine rescued rtPA-induced decrease in survival rate after intracerebral hemorrhage. CONCLUSIONS: Memantine could be used as an adjunct therapy to improve the safety of thrombolysis.


Assuntos
Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Memantina/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Terapia Trombolítica/métodos , Ativador de Plasminogênio Tecidual/efeitos adversos , Ativador de Plasminogênio Tecidual/uso terapêutico , Animais , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Quimioterapia Adjuvante , Antagonistas de Aminoácidos Excitatórios/farmacologia , Fibrinolíticos/efeitos adversos , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Técnicas In Vitro , Imageamento por Ressonância Magnética , Masculino , Memantina/farmacologia , Camundongos , Modelos Animais , N-Metilaspartato/farmacologia , Acidente Vascular Cerebral/patologia , Ativador de Plasminogênio Tecidual/farmacologia , Resultado do Tratamento
17.
Neuroimage ; 63(2): 760-70, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22813950

RESUMO

Since endothelial cells can be targeted by large contrast-carrying particles, molecular imaging of cerebrovascular cell activation is highly promising to evaluate the underlying inflammation of the central nervous system (CNS). In this study, we aimed to demonstrate that molecular magnetic resonance imaging (MRI) of cerebrovascular cell activation can reveal CNS disorders in the absence of visible lesions and symptoms. To this aim, we optimized contrast carrying particles targeting vascular cell adhesion molecule-1 and MRI protocols through both in vitro and in vivo experiments. Although, pre-contrast MRI images failed to reveal the ongoing pathology, contrast-enhanced MRI revealed hypoperfusion-triggered CNS injury in vascular dementia, unmasked amyloid-induced cerebrovascular activation in Alzheimer's disease and allowed monitoring of disease activity during experimental autoimmune encephalomyelitis. Moreover, contrast-enhanced MRI revealed the cerebrovascular cell activation associated with known risk factors of CNS disorders such as peripheral inflammation, ethanol consumption, hyperglycemia and aging. By providing a dramatically higher sensitivity than previously reported methods and molecular contrast agents, the technology described in the present study opens new avenues of investigation in the field of neuroinflammation.


Assuntos
Doenças do Sistema Nervoso Central/diagnóstico , Células Endoteliais/metabolismo , Compostos Férricos , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Animais , Western Blotting , Imuno-Histoquímica , Masculino , Nanopartículas Metálicas , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Stroke ; 42(8): 2315-22, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21680906

RESUMO

BACKGROUND AND PURPOSE: Tissue-type plasminogen activator (tPA) is the only drug approved for the acute treatment of ischemic stroke but with two faces in the disease: beneficial fibrinolysis in the vasculature and damaging effects on the neurovascular unit and brain parenchyma. To improve this profile, we developed a novel strategy, relying on antibodies targeting the proneurotoxic effects of tPA. METHODS: After production and characterization of antibodies (αATD-NR1) that specifically prevent the interaction of tPA with the ATD-NR1 of N-methyl-d-aspartate receptors, we have evaluated their efficacy in a model of murine thromboembolic stroke with or without recombinant tPA-induced reperfusion, coupled to MRI, near-infrared fluorescence imaging, and behavior assessments. RESULTS: In vitro, αATD-NR1 prevented the proexcitotoxic effect of tPA without altering N-methyl-d-aspartate-induced neurotransmission. In vivo, after a single administration alone or with late recombinant tPA-induced thrombolysis, antibodies dramatically reduced brain injuries and blood-brain barrier leakage, thus improving long-term neurological outcome. CONCLUSIONS: Our strategy limits ischemic damages and extends the therapeutic window of tPA-driven thrombolysis. Thus, the prospect of this immunotherapy is an extension of the range of treatable patients.


Assuntos
Anticorpos/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Fibrinolíticos/uso terapêutico , Receptores de N-Metil-D-Aspartato/imunologia , Acidente Vascular Cerebral/tratamento farmacológico , Ativador de Plasminogênio Tecidual/uso terapêutico , Animais , Anticorpos/imunologia , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Isquemia Encefálica/imunologia , Fibrinolíticos/imunologia , Camundongos , Acidente Vascular Cerebral/imunologia , Ativador de Plasminogênio Tecidual/imunologia
19.
Neurobiol Learn Mem ; 96(2): 121-9, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21440650

RESUMO

Although tissue type plasminogen activator (tPA) and brain derived neurotrophic factor (BDNF) have been extensively described to influence brain outcomes in a number of disorders, their roles during physiological aging are poorly investigated. In the present study, we investigated whether maintenance of mice in different environmental conditions could influence age-associated changes in hippocampal tPA expression and BDNF maturation in relation with modifications of their cognitive performances. Our data indicate that maintenance in enriched housing led to a reversal of age-associated decrease in expression of hippocampal tPA. A subsequent increase in the level of mature BDNF and an improvement in emotional and spatial memories were observed. Taken together, these data suggest that the tPA-BDNF axis could play a critical role in the control of cognitive functions influenced both by the age and housing conditions.


Assuntos
Envelhecimento/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/fisiologia , Meio Ambiente , Neurônios/fisiologia , Ativador de Plasminogênio Tecidual/metabolismo , Animais , Aprendizagem por Associação/fisiologia , Comportamento Animal/fisiologia , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Feminino , Abrigo para Animais , Memória/fisiologia , Camundongos
20.
Front Cardiovasc Med ; 8: 752769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869659

RESUMO

Delayed cerebral ischemia (DCI) is one of the main prognosis factors for disability after aneurysmal subarachnoid hemorrhage (SAH). The lack of a consensual definition for DCI had limited investigation and care in human until 2010, when a multidisciplinary research expert group proposed to define DCI as the occurrence of cerebral infarction (identified on imaging or histology) associated with clinical deterioration. We performed a systematic review to assess whether preclinical models of SAH meet this definition, focusing on the combination of noninvasive imaging and neurological deficits. To this aim, we searched in PUBMED database and included all rodent SAH models that considered cerebral ischemia and/or neurological outcome and/or vasospasm. Seventy-eight publications were included. Eight different methods were performed to induce SAH, with blood injection in the cisterna magna being the most widely used (n = 39, 50%). Vasospasm was the most investigated SAH-related complication (n = 52, 67%) compared to cerebral ischemia (n = 30, 38%), which was never investigated with imaging. Neurological deficits were also explored (n = 19, 24%). This systematic review shows that no preclinical SAH model meets the 2010 clinical definition of DCI, highlighting the inconsistencies between preclinical and clinical standards. In order to enhance research and favor translation to humans, pertinent SAH animal models reproducing DCI are urgently needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA