Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 185: 105139, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35772842

RESUMO

As temperature is expected to strongly increase in the future, understanding temperature-mediated toxicity of insecticides is determinant to assess pest management efficiency in a warming world. Investigating molecular and biochemical mechanisms associated with cross mechanisms of temperature and insecticides on pests' tolerance would also be useful in this context. This study aimed to investigate cross effects between temperature and insecticides on the survival of a major pest, the codling moth Cydia pomonella, and their underlying mechanisms. The effect of three insecticidal active ingredients, i.e. chlorantraniliprole, emamectin and spinosad, was assessed at different temperatures on: (i) C. pomonella larval survival; (ii) detoxification enzymes activities (cytochrome P450 multi-function oxygenases, carboxylesterases and glutathione S-transferases) and (iii) genes expression of some detoxification enzymes, heat shock proteins and receptors targeted by the insecticides. We observed a decreased efficiency of emamectin and spinosad at high temperature to control the codling moth while no influence of temperature on chlorantraniliprole efficacy was observed. Detoxification enzymes activities were improved by heat stress alone but not by double stress (temperature + insecticides). Moreover, two detoxification genes (Cyp9A61 and Gst1) were over-expressed by a single stress but not by two stresses while Hsp70 and Cyp6B2 genes may be involved in tolerance to two stresses in C. pomonella. These results confirmed the cross effects of temperature and insecticides on C. pomonella for emamectin and spinosad and provided clues to understand how temperature affects the susceptibility of C. pomonella to insecticides. They illustrate however the complexity of molecular and biochemical responses of individuals facing multiple stresses.


Assuntos
Inseticidas , Mariposas , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Resposta ao Choque Térmico , Inseticidas/metabolismo , Inseticidas/toxicidade , Larva
2.
Pestic Biochem Physiol ; 181: 105014, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35082037

RESUMO

Neonicotinoids are the most important class of insecticides used as pest management tools during several decades. Exposition of insect to sublethal dose of insecticide induces physiological and cellular changes that could contribute to the adaptation of the insects in order to loss their sensitivity to insecticides. The aim of our study is to demonstrate that a subchronic exposure to a sublethal dose of a neonicotinoid imidacloprid is sufficient to induce molecular changes leading to a loss of imidacloprid sensitivity. We report that in the cockroach, Periplaneta americana, subchronic exposure to a sublethal dose of imidacloprid induced weak changes in detoxification enzyme activity and a significant decrease of the nicotinic acetylcholine α2 mRNA. This molecular effect is correlated to a decrease of imidacloprid sensitivity of cockroaches. Using RNA interference, we shown the key role of nicotinic acetylcholine α2 subunit in imidacloprid sensitivity. Thus, quantitative changes in insecticide targets lead to decreased sensitivity to insecticides. This parameter needs to be considered in order to develop sustainable insect resistance management strategies.


Assuntos
Inseticidas , Periplaneta , Receptores Nicotínicos , Acetilcolina , Animais , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nicotina , Nitrocompostos/toxicidade , Receptores Nicotínicos/genética
3.
J Econ Entomol ; 108(1): 219-27, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26470123

RESUMO

Cydia pomonella (L.) and Cydia molesta (Busck) (Lepidoptera: Tortricidae) are two important lepidopteran pests that may co-occur in apple orchards and are difficult to differentiate in the larval stage. We investigate the possibility of using near-infrared spectroscopy (NIRS) coupled with partial least squares analysis to distinguish the larvae of the two species. We further assess whether wild individuals can be differentiated using laboratory strains of the two species for model calibration. The NIRS spectra of C. molesta and C. pomonella differed most in the wavelengths between 1,142 and 1,338 nm. Using these wavelengths, partial least squares analysis allowed the differentiation of C. molesta and C. pomonella at the larval stage with very low error, but only as long as both the calibration and prediction sets for individuals had the same origin (either both from the laboratory or both from the field). Errors that appeared when using laboratory individuals for calibration were owing to the divergence of the C. pomonella laboratory strain, most likely following evolution during rearing. Thus, NIRS appears to be a promising tool for the easy and rapid identification of individuals in the field, provided that it is calibrated based on a subset of field individuals.


Assuntos
Mariposas/classificação , Animais , Larva/classificação , Espectrofotometria Infravermelho
4.
Chemosphere ; 227: 416-424, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31003126

RESUMO

Apple orchards are highly treated crops, in which organophosphorus (OP) are among the most heavily sprayed insecticides. These pesticides are toxic to non-target arthropods and their repeated use increases the risk of resistance. We studied mechanisms involved in tolerance and resistance to OP insecticides in the earwig Forficula auricularia, an effective generalist predator in pomefruit orchards. Adult earwigs were sampled in three apple orchards managed under contrasting strategies: conventional, Integrated Pest Management, and organic. The threshold activities of enzyme families involved in pesticides tolerance: Glutathione-S-transferases (GSTs) and Carboxylesterases (CbEs) were measured in earwig extracts. Acetylcholinesterase (AChE) was monitored as a toxicological endpoint. Variations in these activities were assessed prior to and after exposure to chlorpyrifos-ethyl at the normal application rate. We observed that the mortality of earwigs exposed to chlorpyrifos-ethyl depended on the management strategy of orchards. Significantly lower mortality was seen in individuals sampled from conventional orchard. The basal activities of CbEs and GSTs of collected organisms were higher in conventional orchard. After in vivo exposure, AChE activity appeared to be inhibited in surviving males with no difference between orchards. However an in vitro inhibition trial with chlorpyrifos-oxon showed that AChE from earwigs collected in organic and IPM orchards were more sensitive than from conventional ones. These observations support the hypothesis of a molecular target modification in AChE and highlight the possible role of CbEs in effective protection of AChE. Our findings suggest that the earwigs with a high historic level of insecticide exposure could acquire resistance to chlorpyrifos-ethyl.


Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/toxicidade , Insetos/efeitos dos fármacos , Inseticidas/toxicidade , Compostos Organotiofosforados/toxicidade , Adaptação Fisiológica , Animais , Clorpirifos/análogos & derivados , Insetos/fisiologia , Masculino , Malus , Praguicidas
5.
Nat Commun ; 10(1): 4237, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530873

RESUMO

The codling moth Cydia pomonella, a major invasive pest of pome fruit, has spread around the globe in the last half century. We generated a chromosome-level scaffold assembly including the Z chromosome and a portion of the W chromosome. This assembly reveals the duplication of an olfactory receptor gene (OR3), which we demonstrate enhances the ability of C. pomonella to exploit kairomones and pheromones in locating both host plants and mates. Genome-wide association studies contrasting insecticide-resistant and susceptible strains identify hundreds of single nucleotide polymorphisms (SNPs) potentially associated with insecticide resistance, including three SNPs found in the promoter of CYP6B2. RNAi knockdown of CYP6B2 increases C. pomonella sensitivity to two insecticides, deltamethrin and azinphos methyl. The high-quality genome assembly of C. pomonella informs the genetic basis of its invasiveness, suggesting the codling moth has distinctive capabilities and adaptive potential that may explain its worldwide expansion.


Assuntos
Cromossomos de Insetos/genética , Resistência a Inseticidas , Inseticidas/farmacologia , Mariposas/efeitos dos fármacos , Mariposas/genética , Animais , Duplicação Gênica , Genoma de Inseto , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Feromônios/metabolismo , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
6.
J Econ Entomol ; 110(2): 598-606, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062792

RESUMO

The European corn borer (Ostrinia nubilalis (Hübner)) is one of the most serious corn pest in Europe where it is controlled with pesticides, in particular, pyrethroids. First control failures with this chemical family occurred on the field in 2008 in the center of France, and the first resistance case was described in 2012. In the present study, we investigate resistance mechanisms involved in seven French populations of O. nubilalis collected in the field. Resistances to deltamethrin and lambda-cyhalothrin were confirmed, with a higher resistance ratio for lambda-cyhalothrin (63.79 compared to 7.67). Resistance to the two active compounds was correlated except for one population, indicating a high probability of cross-resistance. Analyses of the activity of three major families of detoxification enzymes in resistant individuals showed a significant increase of the average MFO activity in males of four populations (activity ratios of 2.76-5.73) and higher GST activity in females of two other populations (activity ratios 4.48 and 5.21). Molecular investigation of the sodium channel gene sequence showed the presence of the kdr mutation in a highly resistant individual. We designed a PCR-RFLP screening tool to search for this mutation in the field, and we found it in five populations but not in the susceptible one. The resistance of O. nubilalis to pyrethroids in France seems to result from a combination of resistance mechanisms, possibly as a consequence of a selection pressure with an exceptional duration (almost 40 yr old).


Assuntos
Proteínas de Insetos/genética , Resistência a Inseticidas/fisiologia , Inseticidas/farmacologia , Lepidópteros/efeitos dos fármacos , Nitrilas/farmacologia , Piretrinas/farmacologia , Animais , Carboxilesterase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , França , Glutationa Transferase/metabolismo , Proteínas de Insetos/metabolismo , Resistência a Inseticidas/efeitos dos fármacos , Lepidópteros/fisiologia , Mutação , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA