Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Plant J ; 114(2): 293-309, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36748183

RESUMO

When covered by a layer of soil, seedling development follows a dark-specific program (skotomorphogenesis). In the dark, seedlings consist of small, non-green cotyledons, a long hypocotyl, and an apical hook to protect meristematic cells. We recently highlighted the role played by mitochondria in the high energy-consuming reprogramming of Arabidopsis skotomorphogenesis. Here, the role played by plastids, another energy-supplying organelle, in skotomorphogenesis is investigated. This study was conducted in dark conditions to exclude light signals so as to better focus on those produced by plastids. It was found that limitation of plastid gene expression (PGE) induced an exaggerated apical hook bending. Inhibition of PGE was obtained at the levels of transcription and translation using the antibiotics rifampicin (RIF) and spectinomycin, respectively, as well as plastid RPOTp RNA polymerase mutants. RIF-treated seedlings also showed expression induction of marker nuclear genes for mitochondrial stress, perturbation of mitochondrial metabolism, increased ROS levels, and an augmented capacity of oxygen consumption by mitochondrial alternative oxidases (AOXs). AOXs act to prevent overreduction of the mitochondrial electron transport chain. Previously, we reported that AOX1A, the main AOX isoform, is a key component in the developmental response to mitochondrial respiration deficiency. In this work, we suggest the involvement of AOX1A in the response to PGE dysfunction and propose the importance of signaling between plastids and mitochondria. Finally, it was found that seedling architecture reprogramming in response to RIF was independent of canonical organelle retrograde pathways and the ethylene signaling pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Plântula/metabolismo , Hipocótilo , Cloroplastos/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
2.
Physiol Plant ; 176(1): e14220, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356368

RESUMO

Myrtaceae species are abundant in tropical Atlantic rainforests, but 41% of the 5500 species of this family are of extreme conservation concern. Eugenia astringens and E. uniflora are native Brazilian Myrtaceae species that occur in the same habitats and produce desiccation-sensitive (DS) seeds. We hypothesized that their seed desiccation-sensitivity degree is associated with specific metabolic signatures. To test it, we analyzed the germination and metabolic profiles of fresh and desiccated seeds. The water content (WC) at which at least half of the seeds survived desiccation was lower in E. astringens (0.17 g H2 O g-1 DW) than in E. uniflora (0.41 g H2 O g-1 DW). We identified 103 annotated metabolites from 3261 peaks in both species, which differed in their relative contents between E. astringens and E. uniflora seeds. The main differences in seed metabolic profiles include several protective molecules in the group of carbohydrates and organic acids and amino acid contents. The relative contents of monosaccharides and disaccharides, malic and quinic acids, amino acids and saturated fatty acids may have taken part in the distinct DS behaviour of E. astringens and E. uniflora seeds. Our study provides evidence of the relationship between desiccation sensitivity, seed viability and metabolic profile of tropical seeds by comparing two closely related Eugenia species with different DS degrees.


Assuntos
Eugenia , Myrtaceae , Dessecação , Germinação , Sementes , Aminoácidos , Metaboloma
3.
Plant Cell Environ ; 42(9): 2567-2583, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31134633

RESUMO

The photorespiratory cycle is a crucial pathway in photosynthetic organisms because it removes toxic 2-phosphoglycolate made by the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase and retrieves its carbon as 3-phosphoglycerate. Mitochondrial serine hydroxymethyltransferase 1 (SHMT1) is an essential photorespiratory enzyme converting glycine to serine. SHMT1 regulation remains poorly understood although it could involve the phosphorylation of serine 31. Here, we report the complementation of Arabidopsis thaliana shm1-1 by SHMT1 wild-type, phosphorylation-mimetic (S31D) or nonphophorylatable (S31A) forms. All SHMT1 forms could almost fully complement the photorespiratory growth phenotype of shm1-1; however, each transgenic line had only 50% of normal SHMT activity. In response to either a salt or drought stress, Compl-S31D lines showed a more severe growth deficiency compared with the other transgenic lines. This sensitivity to salt appeared to reflect reduced SHMT1-S31D protein amounts and a lower activity that impacted leaf metabolism leading to proline underaccumulation and overaccumulation of polyamines. The S31D mutation in SHMT1 also led to a reduction in salt-induced and ABA-induced stomatal closure. Taken together, our results highlight the importance of maintaining photorespiratory SHMT1 activity in salt and drought stress conditions and indicate that SHMT1 S31 phosphorylation could be involved in modulating SHMT1 protein stability.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Glicina Hidroximetiltransferase/metabolismo , Estômatos de Plantas/fisiologia , Tolerância ao Sal/genética , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Dióxido de Carbono , Respiração Celular , Desidratação , Secas , Teste de Complementação Genética , Fosforilação , Fotossíntese , Plantas Geneticamente Modificadas , Estresse Fisiológico
5.
Plant Physiol ; 173(1): 434-455, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27852950

RESUMO

Plant mutants for genes encoding subunits of mitochondrial complex I (CI; NADH:ubiquinone oxidoreductase), the first enzyme of the respiratory chain, display various phenotypes depending on growth conditions. Here, we examined the impact of photoperiod, a major environmental factor controlling plant development, on two Arabidopsis (Arabidopsis thaliana) CI mutants: a new insertion mutant interrupted in both ndufs8.1 and ndufs8.2 genes encoding the NDUFS8 subunit and the previously characterized ndufs4 CI mutant. In the long day (LD) condition, both ndufs8.1 and ndufs8.2 single mutants were indistinguishable from Columbia-0 at phenotypic and biochemical levels, whereas the ndufs8.1 ndufs8.2 double mutant was devoid of detectable holo-CI assembly/activity, showed higher alternative oxidase content/activity, and displayed a growth retardation phenotype similar to that of the ndufs4 mutant. Although growth was more affected in ndufs4 than in ndufs8.1 ndufs8.2 under the short day (SD) condition, both mutants displayed a similar impairment of growth acceleration after transfer to LD compared with the wild type. Untargeted and targeted metabolomics showed that overall metabolism was less responsive to the SD-to-LD transition in mutants than in the wild type. The typical LD acclimation of carbon and nitrogen assimilation as well as redox-related parameters was not observed in ndufs8.1 ndufs8 Similarly, NAD(H) content, which was higher in the SD condition in both mutants than in Columbia-0, did not adjust under LD We propose that altered redox homeostasis and NAD(H) content/redox state control the phenotype of CI mutants and photoperiod acclimation in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Complexo I de Transporte de Elétrons/genética , Fotoperíodo , Antioxidantes/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Mutação , Nitrogênio/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo
6.
J Biol Chem ; 290(3): 1689-98, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25416784

RESUMO

In plants, glycolate oxidase is involved in the photorespiratory cycle, one of the major fluxes at the global scale. To clarify both the nature of the mechanism and possible differences in glycolate oxidase enzyme chemistry from C3 and C4 plant species, we analyzed kinetic parameters of purified recombinant C3 (Arabidopsis thaliana) and C4 (Zea mays) plant enzymes and compared isotope effects using natural and deuterated glycolate in either natural or deuterated solvent. The (12)C/(13)C isotope effect was also investigated for each plant glycolate oxidase protein by measuring the (13)C natural abundance in glycolate using natural or deuterated glycolate as a substrate. Our results suggest that several elemental steps were associated with an hydrogen/deuterium isotope effect and that glycolate α-deprotonation itself was only partially rate-limiting. Calculations of commitment factors from observed kinetic isotope effect values support a hydride transfer mechanism. No significant differences were seen between C3 and C4 enzymes.


Assuntos
Oxirredutases do Álcool/metabolismo , Arabidopsis/enzimologia , Proteínas de Plantas/metabolismo , Zea mays/enzimologia , Isótopos de Carbono/química , Catálise , Deutério/química , Escherichia coli/metabolismo , Luz , Modelos Químicos , Extratos Vegetais/química , Folhas de Planta/metabolismo , Fenômenos Fisiológicos Vegetais , Ligação Proteica , Conformação Proteica , Solventes/química
7.
Plant Cell Environ ; 39(1): 199-212, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26228944

RESUMO

Oil palm has now become one of the most important crops, palm oil representing nearly 25% of global plant oil consumption. Many studies have thus addressed oil palm ecophysiology and photosynthesis-based models of carbon allocation have been used. However, there is a lack of experimental data on carbon fixation and redistribution within palm trees, and important C-sinks have not been fully characterized yet. Here, we carried out extensive measurement of natural (13) C-abundance (δ(13) C) in oil palm tissues, including fruits at different maturation stages. We find a (13) C-enrichment in heterotrophic organs compared to mature leaves, with roots being the most (13) C-enriched. The δ(13) C in fruits decreased during maturation, reflecting the accumulation in (13) C-depleted lipids. We further used observed δ(13) C values to compute plausible carbon fluxes using a steady-state model of (13) C-distribution including metabolic isotope effects ((12) v/(13) v). The results suggest that fruits represent a major respiratory loss (≈39% of total tree respiration) and that sink organs such as fruits are fed by sucrose from leaves. That is, glucose appears to be a quantitatively important compound in palm tissues, but computations indicate that it is involved in dynamic starch metabolism rather that C-exchange between organs.


Assuntos
Arecaceae/metabolismo , Metabolismo dos Carboidratos , Ciclo do Carbono , Isótopos de Carbono/metabolismo , Óleos de Plantas/metabolismo , Arecaceae/crescimento & desenvolvimento , Biomassa , Carboidratos , Carbono/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Indonésia , Lipídeos , Modelos Biológicos , Óleo de Palmeira , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Transpiração Vegetal/fisiologia
8.
Plant Cell ; 25(10): 4195-208, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24151294

RESUMO

Cardiolipin (CL) is the signature phospholipid of the mitochondrial inner membrane. In animals and yeast (Saccharomyces cerevisiae), CL depletion affects the stability of respiratory supercomplexes and is thus crucial to the energy metabolism of obligate aerobes. In eukaryotes, the last step of CL synthesis is catalyzed by CARDIOLIPIN SYNTHASE (CLS), encoded by a single-copy gene. Here, we characterize a cls mutant in Arabidopsis thaliana, which is devoid of CL. In contrast to yeast cls, where development is little affected, Arabidopsis cls seedlings are slow developing under short-day conditions in vitro and die if they are transferred to long-day (LD) conditions. However, when transferred to soil under LD conditions under low light, cls plants can reach the flowering stage, but they are not fertile. The cls mitochondria display abnormal ultrastructure and reduced content of respiratory complex I/complex III supercomplexes. The marked accumulation of tricarboxylic acid cycle derivatives and amino acids demonstrates mitochondrial dysfunction. Mitochondrial and chloroplastic antioxidant transcripts are overexpressed in cls leaves, and cls protoplasts are more sensitive to programmed cell death effectors, UV light, and heat shock. Our results show that CLS is crucial for correct mitochondrial function and development in Arabidopsis under both optimal and stress conditions.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , Proteínas de Membrana/fisiologia , Mitocôndrias/ultraestrutura , Transferases (Outros Grupos de Fosfato Substituídos)/fisiologia , Antioxidantes/metabolismo , Apoptose , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Cardiolipinas/química , DNA Bacteriano , Luz , Proteínas de Membrana/genética , Membranas Mitocondriais/química , Mutagênese Insercional , Protoplastos/enzimologia , Plântula/crescimento & desenvolvimento , Estresse Fisiológico , Transferases (Outros Grupos de Fosfato Substituídos)/genética
9.
Methods Mol Biol ; 2792: 19-27, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38861075

RESUMO

Besides the historical and traditional use of nuclear magnetic resonance (NMR) spectroscopy as a structure elucidation tool for proteins and metabolites, its quantification ability allows the determination of metabolite amounts and therefore enzymatic activity measurements. For this purpose, 1H-NMR with adapted water pulse pre-saturation sequences and calibration curves with commercial standard solutions can be used to quantify the photorespiratory cycle intermediates, 2-phosphoglycolate and glycolate, associated with the phosphoglycolate phosphatase reaction. The intensity of the 1H-NMR signal of glycolate produced by the activity of purified recombinant Arabidopsis thaliana PGLP1 can therefore be used to determine PGLP1 enzymatic activities and kinetic parameters.


Assuntos
Arabidopsis , Glicolatos , Espectroscopia de Ressonância Magnética , Monoéster Fosfórico Hidrolases , Glicolatos/metabolismo , Glicolatos/química , Monoéster Fosfórico Hidrolases/metabolismo , Arabidopsis/metabolismo , Arabidopsis/enzimologia , Espectroscopia de Ressonância Magnética/métodos , Proteínas de Arabidopsis/metabolismo , Ensaios Enzimáticos/métodos , Cinética , Proteínas Recombinantes/metabolismo
10.
Plant J ; 70(4): 650-65, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22268572

RESUMO

Plant development and function are underpinned by redox reactions that depend on co-factors such as nicotinamide adenine dinucleotide (NAD). NAD has recently been shown to be involved in several signalling pathways that are associated with stress tolerance or defence responses. However, the mechanisms by which NAD influences plant gene regulation, metabolism and physiology still remain unclear. Here, we took advantage of Arabidopsis thaliana lines that overexpressed the nadC gene from E. coli, which encodes the NAD biosynthesis enzyme quinolinate phosphoribosyltransferase (QPT). Upon incubation with quinolinate, these lines accumulated NAD and were thus used as inducible systems to determine the consequences of an increased NAD content in leaves. Metabolic profiling showed clear changes in several metabolites such as aspartate-derived amino acids and NAD-derived nicotinic acid. Large-scale transcriptomic analyses indicated that NAD promoted the induction of various pathogen-related genes such as the salicylic acid (SA)-responsive defence marker PR1. Extensive comparison with transcriptomic databases further showed that gene expression under high NAD content was similar to that obtained under biotic stress, eliciting conditions or SA treatment. Upon inoculation with the avirulent strain of Pseudomonas syringae pv. tomato Pst-AvrRpm1, the nadC lines showed enhanced resistance to bacteria infection and exhibited an ICS1-dependent build-up of both conjugated and free SA pools. We therefore concluded that higher NAD contents are beneficial for plant immunity by stimulating SA-dependent signalling and pathogen resistance.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , NAD/metabolismo , Pseudomonas syringae/crescimento & desenvolvimento , Salicilatos/metabolismo , Arabidopsis/microbiologia , Análise por Conglomerados , Resistência à Doença/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Interações Hospedeiro-Patógeno , Metaboloma/efeitos dos fármacos , Metaboloma/genética , Análise de Sequência com Séries de Oligonucleotídeos , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Doenças das Plantas/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Pseudomonas syringae/fisiologia , Ácido Quinolínico/metabolismo , Ácido Quinolínico/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma/genética , Transgenes/genética
11.
Planta ; 235(3): 603-14, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22002624

RESUMO

To investigate the role of plant mitochondria in drought tolerance, the response to water deprivation was compared between Nicotiana sylvestris wild type (WT) plants and the CMSII respiratory complex I mutant, which has low-efficient respiration and photosynthesis, high levels of amino acids and pyridine nucleotides, and increased antioxidant capacity. We show that the delayed decrease in relative water content after water withholding in CMSII, as compared to WT leaves, is due to a lower stomatal conductance. The stomatal index and the abscisic acid (ABA) content were unaffected in well-watered mutant leaves, but the ABA/stomatal conductance relation was altered during drought, indicating that specific factors interact with ABA signalling. Leaf hydraulic conductance was lower in mutant leaves when compared to WT leaves and the role of oxidative aquaporin gating in attaining a maximum stomatal conductance is discussed. In addition, differences in leaf metabolic status between the mutant and the WT might contribute to the low stomatal conductance, as reported for TCA cycle-deficient plants. After withholding watering, TCA cycle derived organic acids declined more in CMSII leaves than in the WT, and ATP content decreased only in the CMSII. Moreover, in contrast to the WT, total free amino acid levels declined whilst soluble protein content increased in CMSII leaves, suggesting an accelerated amino acid remobilisation. We propose that oxidative and metabolic disturbances resulting from remodelled respiration in the absence of Complex I activity could be involved in bringing about the lower stomatal and hydraulic conductances.


Assuntos
Secas , Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/metabolismo , Nicotiana/metabolismo , Nicotiana/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Ácido Abscísico/metabolismo , Trifosfato de Adenosina/metabolismo , Complexo I de Transporte de Elétrons/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta/genética , Estômatos de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Nicotiana/genética
12.
Plant Physiol ; 157(1): 256-68, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21757634

RESUMO

The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway.


Assuntos
Aminoácidos/metabolismo , Glicina/análogos & derivados , Herbicidas/farmacologia , Homeostase , Fotossíntese , Proteínas de Plantas/metabolismo , Ácido Chiquímico/antagonistas & inibidores , Glicina/farmacologia , Oxirredução , Proteômica , Ácido Chiquímico/metabolismo , Glifosato
13.
Plant Cell ; 21(10): 3296-314, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19855051

RESUMO

The earliest proteolytic event affecting most proteins is the excision of the initiating Met (NME). This is an essential and ubiquitous cotranslational process tightly regulated in all eukaryotes. Currently, the effects of NME on unknown complex cellular networks and the ways in which its inhibition leads to developmental defects and cell growth arrest remain poorly understood. Here, we provide insight into the earliest molecular mechanisms associated with the inhibition of the NME process in Arabidopsis thaliana. We demonstrate that the developmental defects induced by NME inhibition are caused by an increase in cellular proteolytic activity, primarily induced by an increase in the number of proteins targeted for rapid degradation. This deregulation drives, through the increase of the free amino acids pool, a perturbation of the glutathione homeostasis, which corresponds to the earliest limiting, reversible step promoting the phenotype. We demonstrate that these effects are universally conserved and that the reestablishment of the appropriate glutathione status restores growth and proper development in various organisms. Finally, we describe a novel integrated model in which NME, protein N-alpha-acylation, proteolysis, and glutathione homeostasis operate in a sequentially regulated mechanism that directs both growth and development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glutationa/metabolismo , Homeostase/fisiologia , Arabidopsis/genética , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Homeostase/genética , Espectrometria de Massas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Modificação Traducional de Proteínas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Plant Cell Environ ; 34(2): 270-83, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20955224

RESUMO

In leaves, although it is accepted that CO(2) evolved by dark respiration after illumination is naturally (13) C-enriched compared to organic matter or substrate sucrose, much uncertainty remains on whether day respiration produces (13) C-depleted or (13) C-enriched CO(2). Here, we applied equations described previously for mesocosm CO(2) exchange to investigate the carbon isotope composition of CO(2) respired by autotrophic and heterotrophic tissues of Pelargonium × hortorum leaves, taking advantage of leaf variegation. Day-respired CO(2) was slightly (13) C-depleted compared to organic matter both under 21% O(2) and 2% O(2). Furthermore, most, if not all CO(2) molecules evolved in the light came from carbon atoms that had been fixed previously before the experiments, in both variegated and green leaves. We conclude that the usual definition of day respiratory fractionation, that assumes carbon fixed by current net photosynthesis is the respiratory substrate, is not valid in Pelargonium leaves under our conditions. In variegated leaves, total organic matter was slightly (13) C-depleted in white areas and so were most primary metabolites. This small isotopic difference between white and green areas probably came from the small contribution of photosynthetic CO(2) refixation and the specific nitrogen metabolism in white leaf areas.


Assuntos
Dióxido de Carbono/metabolismo , Isótopos de Carbono/análise , Ritmo Circadiano/fisiologia , Pelargonium/metabolismo , Folhas de Planta/metabolismo , Processos Autotróficos , Dióxido de Carbono/química , Respiração Celular , Escuridão , Processos Heterotróficos , Luz , Pelargonium/anatomia & histologia , Pelargonium/fisiologia , Fotossíntese , Folhas de Planta/anatomia & histologia , Fatores de Tempo
15.
Plant Cell Environ ; 34(5): 792-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21276010

RESUMO

Leaf intrinsic water-use efficiency (WUE), the ratio of photosynthetic rate to stomatal conductance (A/g(s) ), is a key plant trait linking terrestrial carbon and water cycles. A rapid, integrative proxy for A/g(s) is of benefit to crop breeding programmes aiming to improve WUE, but also for ecologists interested in plant carbon-water balance in natural systems. We hypothesize that the carbon isotope composition of leaf-respired CO(2) (δ(13) C(Rl) ), two hours after leaves are transferred to the dark, records photosynthetic carbon isotope discrimination and so provides a proxy for A/g(s) . To test this hypothesis, δ(13) C(Rl) was measured in four barley cultivars grown in the field at two levels of water availability and compared to leaf-level gas exchange (the ratio of leaf intercellular to ambient CO(2) partial pressure, C(i) /C(a) , and A/g(s) ). Leaf-respired CO(2) was more (13) C-depleted in plants grown at higher water availability, varied between days as environmental conditions changed, and was significantly different between cultivars. A strong relationship between δ(13) C(Rl) and δ(13) C of sucrose was observed. δ(13) C(Rl) was converted into apparent photosynthetic discrimination (Δ(13) C(Rl) ) revealing strong relationships between Δ(13) C(Rl) and C(i) /C(a) and A/g(s) during the vegetative stage of growth. We therefore conclude that δ(13) C(Rl) may provide a rapid, integrative proxy for A/g(s) in barley.


Assuntos
Dióxido de Carbono/metabolismo , Hordeum/fisiologia , Fotossíntese , Folhas de Planta/fisiologia , Transpiração Vegetal , Água/fisiologia , Isótopos de Carbono/análise , Hordeum/crescimento & desenvolvimento , Nitrogênio/metabolismo , Sacarose/análise
16.
Metabolites ; 11(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34436442

RESUMO

Photorespiration is a metabolic process that removes toxic 2-phosphoglycolate produced by the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase. It is essential for plant growth under ambient air, and it can play an important role under stress conditions that reduce CO2 entry into the leaf thus enhancing photorespiration. The aim of the study was to determine the impact of photorespiration on Arabidopsis thaliana leaf amino acid metabolism under low atmospheric CO2 concentrations. To achieve this, wild-type plants and photorespiratory glycolate oxidase (gox) mutants were given either short-term (4 h) or long-term (1 to 8 d) low atmospheric CO2 concentration treatments and leaf amino acid levels were measured and analyzed. Low CO2 treatments rapidly decreased net CO2 assimilation rate and triggered a broad reconfiguration of soluble amino acids. The most significant changes involved photorespiratory Gly and Ser, aromatic and branched-chain amino acids as well as Ala, Asp, Asn, Arg, GABA and homoSer. While the Gly/Ser ratio increased in all Arabidopsis lines between air and low CO2 conditions, low CO2 conditions led to a higher increase in both Gly and Ser contents in gox1 and gox2.2 mutants when compared to wild-type and gox2.1 plants. Results are discussed with respect to potential limiting enzymatic steps with a special emphasis on photorespiratory aminotransferase activities and the complexity of photorespiration.

17.
Hortic Res ; 8(1): 206, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34593779

RESUMO

Sclareol, an antifungal specialized metabolite produced by clary sage, Salvia sclarea, is the starting plant natural molecule used for the hemisynthesis of the perfume ingredient ambroxide. Sclareol is mainly produced in clary sage flower calyces; however, the cellular localization of the sclareol biosynthesis remains unknown. To elucidate the site of sclareol biosynthesis, we analyzed its spatial distribution in the clary sage calyx epidermis using laser desorption/ionization mass spectrometry imaging (LDI-FTICR-MSI) and investigated the expression profile of sclareol biosynthesis genes in isolated glandular trichomes (GTs). We showed that sclareol specifically accumulates in GTs' gland cells in which sclareol biosynthesis genes are strongly expressed. We next isolated a glabrous beardless mutant and demonstrate that more than 90% of the sclareol is produced by the large capitate GTs. Feeding experiments, using 1-13C-glucose, and specific enzyme inhibitors further revealed that the methylerythritol-phosphate (MEP) biosynthetic pathway is the main source of isopentenyl diphosphate (IPP) precursor used for the biosynthesis of sclareol. Our findings demonstrate that sclareol is an MEP-derived diterpene produced by large capitate GTs in clary sage emphasing the role of GTs as biofactories dedicated to the production of specialized metabolites.

18.
Planta ; 231(5): 1145-57, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20182741

RESUMO

Environmental controls on leaf NAD status remain poorly understood. Here, we analyzed the effects of two key environmental variables, CO(2) and nitrogen, on leaf metabolite profiles, NAD status and the abundance of key transcripts involved in de novo NAD synthesis in wild-type (WT) Nicotiana sylvestris and the CMSII mutant that lacks respiratory complex I. High CO(2) and increased N supply both significantly enhanced NAD(+) and NADH pools in WT leaves. In nitrogen-sufficient conditions, CMSII leaves were enriched in NAD(+) and NADH compared to the WT, but the differences in NADH were smaller at high CO(2) than in air because high CO(2) increased WT NADH/NAD(+). The CMSII-linked increases in NAD(+) and NADH status were abolished by growth with limited nitrogen, which also depleted the nicotine and nicotinic acid pools in the CMSII leaves. Few statistically significant genotype and N-dependent differences were detected in NAD synthesis transcripts, with effects only on aspartate oxidase and NAD synthetase mRNAs. Non-targeted metabolite profiling as well as quantitative amine analysis showed that NAD(+) and NADH contents correlated tightly with leaf amino acid contents across all samples. The results reveal considerable genotype- and condition-dependent plasticity in leaf NAD(+) and NADH contents that is not linked to modified expression of NAD synthesis genes at the transcript level and show that NAD(+) and NADH contents are tightly integrated with nitrogen metabolism. A regulatory two-way feedback circuit between nitrogen and NAD in the regulation of N assimilation is proposed that potentially links the nutritional status to NAD-dependent signaling pathways.


Assuntos
Carbono/metabolismo , Metaboloma , Mitocôndrias/metabolismo , NAD/metabolismo , Nicotiana/metabolismo , Nitrogênio/metabolismo , Aminoácidos/metabolismo , Dióxido de Carbono/metabolismo , Cromatografia Líquida de Alta Pressão , Transporte de Elétrons , Meio Ambiente , Regulação da Expressão Gênica de Plantas , Genótipo , Redes e Vias Metabólicas , Modelos Biológicos , Mutação/genética , Folhas de Planta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
19.
Plant Cell Environ ; 33(7): 1112-23, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20199623

RESUMO

Cytosolic NADP-dependent isocitrate dehydrogenase (cICDH) produces 2-oxoglutarate (2-OG) and NADPH, and is encoded by a single gene in Arabidopsis thaliana. Three allelic lines carrying T-DNA insertions in this gene showed less than 10% extractable leaf ICDH activity, but only relatively small decreases in growth compared to wild-type Col0. Metabolite profiling by gas chromatography-time of flight-mass spectrometry (GC-TOF-MS) and high-performance liquid chromatography (HPLC) revealed that loss of cICDH function produced only small effects on leaf compounds involved in carbon and nitrogen assimilation. To analyse whether cICDH contributes to NADPH production under conditions of oxidative stress, the icdh mutation was introduced into the cat2 background, in which increased availability of H(2)O(2) causes perturbed redox homeostasis and induction of stress-related genes. Accumulation of oxidized glutathione and pathogen-related responses were enhanced in double cat2 icdh mutants compared to cat2. Single icdh mutants presented constitutive induction of PR genes, and enhanced resistance to bacteria in icdh, cat2 and cat2 icdh was quantitatively correlated with PR gene expression. However, the effect of icdh in both Col0 and cat2 backgrounds was not associated with enhanced accumulation of salicylic acid (SA). The results suggest that cICDH, previously considered mainly as an enzyme involved in amino acid synthesis, plays a role in redox signalling linked to pathogen responses.


Assuntos
Arabidopsis/enzimologia , Isocitrato Desidrogenase/metabolismo , Estresse Oxidativo , Doenças das Plantas/genética , Folhas de Planta/enzimologia , Arabidopsis/genética , Carbono/metabolismo , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Glutationa/metabolismo , Homeostase , Peróxido de Hidrogênio/metabolismo , Metaboloma , Mutagênese Insercional , Nitrogênio/metabolismo , Oxirredução , Doenças das Plantas/microbiologia
20.
Rapid Commun Mass Spectrom ; 23(18): 2847-56, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19670342

RESUMO

The response of root metabolism to variations in carbon source availability is critical for whole-plant nitrogen (N) assimilation and growth. However, the effect of changes in the carbohydrate input to intact roots is currently not well understood and, for example, both smaller and larger values of root:shoot ratios or root N uptake have been observed so far under elevated CO(2). In addition, previous studies on sugar starvation mainly focused on senescent or excised organs while an increasing body of data suggests that intact roots may behave differently with, for example, little protein remobilization. Here, we investigated the carbon and nitrogen primary metabolism in intact roots of French bean (Phaseolus vulgaris L.) plants maintained under continuous darkness for 4 days. We combined natural isotopic (15)N/(14)N measurements, metabolomic and (13)C-labeling data and show that intact roots continued nitrate assimilation to glutamate for at least 3 days while the respiration rate decreased. The activity of the tricarboxylic acid cycle diminished so that glutamate synthesis was sustained by the anaplerotic phosphoenolpyruvate carboxylase fixation. Presumably, the pentose phosphate pathway contributed to provide reducing power for nitrate reduction. All the biosynthetic metabolic fluxes were nevertheless down-regulated and, consequently, the concentration of all amino acids decreased. This is the case of asparagine, strongly suggesting that, as opposed to excised root tips, protein remobilization in intact roots remained very low for 3 days in spite of the restriction of respiratory substrates.


Assuntos
Marcação por Isótopo , Metabolômica , Nitrogênio/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Aminoácidos/análise , Aminoácidos/metabolismo , Isótopos de Carbono/química , Isótopos de Carbono/metabolismo , Escuridão , Cromatografia Gasosa-Espectrometria de Massas , Nitrogênio/química , Isótopos de Nitrogênio/química , Isótopos de Nitrogênio/metabolismo , Phaseolus/química , Phaseolus/metabolismo , Phaseolus/efeitos da radiação , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA