Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(6): 2413-2420, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30620195

RESUMO

Crystals of molecular rotor 1 with a central 1,4-phenylene rotator linked to two molecules of the steroid mestranol were prepared with 1%, 5%, 20%, and up to 40% of the analogous 2, which contains a larger 2,3-difluorophenylene rotator and effectively acts as a monkey wrench that affects the rotation of the host. The packing motif of the desired P32 crystal form consists of 1D columns of nested rotors arranged in helical arrays with the central aromatic rotators disordered over two sites related by 85° rotation about their 1,4-axes. Rotational dynamics measured by quadrupolar echo 2H NMR line shape analysis were analyzed in terms of a process model that involves degenerate 180° jumps in the fast exchange regime combined with a highly correlated and entropically demanding jump of 85° between the two dynamically disordered sites. While the enthalpic and entropic barriers for the 180° jump estimated from 2H T1 measurements were Δ H⧧ = 2.7 ± 0.1 kcal mol-1 and Δ S⧧ = -5.0 ± 0.5 cal mol-1 K-1, respectively, the corresponding parameters for the slower 85° jumps, determined by line shape analysis, were Δ H⧧ = 2.2 kcal mol-1 and Δ S⧧ = -23 cal mol-1 K-1. Increasing amounts of the larger molecular rotor 2 in the solid solution results in significant dynamic perturbations as the guest, acting as a monkey wrench, reaches values of one out of every five molecular rotors in the chain.

2.
J Am Chem Soc ; 134(2): 1115-23, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22145996

RESUMO

In an effort to determine the details of the solid-state reaction mechanism and diastereoselectivity in the Norrish type II and Yang cyclization of crystalline α-adamantyl-p-methoxyacetophenone, we determined its solid-state quantum yields and transient kinetics using nanocrystalline suspensions. The transient spectroscopy measurements were complemented with solid-state NMR spectroscopy spin-lattice relaxation experiments using isotopically labeled samples and with the analysis of variable-temperature anisotropic displacement parameters from single-crystal X-ray diffraction to determine the rate of interconversion of biradical conformers by rotation of the globular adamantyl group. Our experimental findings include a solid-state quantum yield for reaction that is 3 times greater than that in solution, a Norrish type II hydrogen-transfer reaction that is about 8 times faster in crystals than in solution, and a biradical decay that occurs on the same time scale as conformational exchange, which helps to explain the diastereoselectivity observed in the solid state.

3.
Acta Crystallogr C ; 68(Pt 1): o1-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22223280

RESUMO

Weakly diffracting crystals of benz[cd]indol-2(1H)-one (naphtholactam), C(11)H(7)NO, were unsuitable for data collection by early photographic methods. However, a diffractometer data set collected at room temperature in 1989 was solved and refined. The peak scans were broad, and the results indicated disorder or a satellite crystal. Recent data collection (on another crystal from the same sample) with an area detector at 100 K revealed the same disorder, and made it possible to refine two different, more complete, disorder models. Both models assume an occasional 180° rotation of the nearly planar centrosymmetric cis-lactam dimer. The refinements differ, especially in the anisotropic displacement parameters for the -C(=O)-NH- portion of the molecule. Both models at 100 K give a C-N (`amide') bond distance of 1.38 Å, about 0.04 Å longer than the average distance in saturated γ-lactams in the Cambridge Structural Database. Cohesive packing interactions between molecules include opposing-dipole dimers; the packing may explain the 10:1 ratio favoring the major-occupancy molecule.


Assuntos
Lactamas/química , Naftalenos/química , Anisotropia , Cristalografia por Raios X , Estrutura Molecular
4.
Acta Crystallogr B ; 66(Pt 6): 622-38, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21099025

RESUMO

The rigidity of the tert-butyl group (TBG) as a substituent in aromatic hydrocarbons is investigated, with a modified Hirshfeld test of anisotropic displacement parameters (ADPs) as a primary criterion. Four new structures are analyzed, along with low-temperature studies of a previously published crowded supermesityl dimer; three of the five structures meet the primary test. Most of the TBGs meet the Hirshfeld test at 100 K, and the ADPs are improved by omitting low-order data in the final refinement. The three most precise structures yield a wide variation in libration amplitudes (and in estimated rotation barriers) for 13 unique TBGs. A similar range of values is found in analyses of structures in the Cambridge Crystallographic Database. The libration amplitudes are calculated with the program THMA14C, with each TBG as an attached rigid group (ARG). Packing analysis suggests that large ADPs, especially for some individual TBG methyl groups, correspond to voids in the crystal. Published barriers to TBG reorientation, determined by solid-state NMR spin-lattice relaxation methods, for six related crystalline compounds are compared with barriers calculated from their crystal structure data.

5.
J Am Chem Soc ; 129(4): 839-45, 2007 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-17243820

RESUMO

A combination of solid-state 13C CPMAS NMR, 2H NMR, X-ray-determined anisotropic displacement parameters (ADPs), and molecular mechanics calculations were used to analyze the rotational dynamics of 1,4-bis[3,3,3-tris(m-methoxyphenyl)propynyl]benzene (3A), a structure that emulates a gyroscope with a p-phenylene group acting as a rotator and two m-methoxy-substituted trityl groups acting as a stator. The line shape analysis of VT 13C CPMAS and broad-band 2H NMR data were in remarkable agreement with each other, with rotational barriers of 11.3 and 11.5 kcal/mol, respectively. The barriers obtained by analysis of ADPs obtained by single-crystal X-ray diffraction at 100 and 200 K, assuming a sinusoidal potential, were 10.3 and 10.1 kcal, respectively. A similar analysis of an X-ray structure solved from data acquired at 300 K suggested a barrier of only 8.0 kcal/mol. Finally, a rotational potential calculated with a finite cluster model using molecular mechanics revealed a symmetric but nonsinusoidal potential that accounts relatively well for the X-ray-derived values and the NMR experimental results. It is speculated that the discrepancy between the barriers derived from low and high-temperature X-ray data may be due to an increase in anharmonicity, or to disorder, at the higher temperature values.

6.
J Org Chem ; 68(6): 2077-88, 2003 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-12636365

RESUMO

The through-shell borane reduction and methyllithium addition to benzaldehyde (1), benzocyclobutenone (2), and benzocyclobutenedione (3) incarcerated inside a hemicarcerand (4) with four tetramethylenedioxy bridges are reported. All guests could be reduced and methylated. Selective monoreduction and monomethylation were observed for 3. In the methyllithium addition to 4[symbol: see text]3, the initially formed lithium alcoholate underwent a Moore rearrangement. The reactivity of the incarcerated guests toward methyllithium increased in the order 1 < 2 << 3 and toward borane in the order 1 << 2 approximately equal 3. Guest reactivity was correlated with the inner-phase location of the reacting carbonyl group in the preferred guest inner-phase orientation. The latter was determined from the X-ray structures of 4[symbol: see text]1, 4[symbol: see text]2, and 4[symbol: see text]3, from molecular mechanical calculations, and from the hemicarcerand-induced upfield shift of the guest proton resonances. In the methyllithium and n-butyllithium addition to 4[symbol: see text]1 and 4[symbol: see text]3 at elevated temperatures, selective cleavage of a host's spanner or tetramethylenedioxy bridge, respectively, was observed. The cleavage of one spanner also took place in the methyllithium addition to the 1-methyl-2-pyrrolidinone hemicarceplex. These scission reactions are initiated by the initially formed lithium alcoholates, which show enhanced basicity and nucleophilicity in the inner phase as compared to the bulk phase. Mechanisms for the host scission reactions are discussed.


Assuntos
Boranos/química , Lítio/química , Modelos Moleculares , Compostos Organometálicos/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Conformação Molecular , Estrutura Molecular , Oxirredução , Raios X
7.
Inorg Chem ; 41(24): 6488-92, 2002 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-12444794

RESUMO

Crystal structure analyses are reported for anhydrous copper(II) hexafluoroacetylacetonate (Cu(hfac)(2)) and for two of its hydrates. The anhydrous compound (Cu(hfac)(2), 1: P1; at 100 K, a = 5.428(1), b = 5.849(1), c = 11.516(3) A; alpha = 81.47(2), beta = 74.57(2), gamma = 86.96(2) degrees; Z = 1) contains centrosymmetric square-planar complexes with close intermolecular Cu.F contacts. The geometry of the complex is similar to that previously reported for Cu(hfac)(2).toluene. The monoaquo compound (Cu(hfac)(2)(H(2)O), 2: P2(1)/c; at 100 K, a = 10.8300(8), b = 6.5400(6), c = 21.551(3) A; beta = 90.282(8) degrees; Z = 4) consists of square-pyramidal molecules with apical H(2)O ligands, and close-lying F atoms in the sixth coordination sites. The major difference between this structure and the two other polymorphs previously reported is the nature and direction of hydrogen bonds. The yellow-green solid formed from Cu(hfac)(2) with excess H(2)O is identified as the trihydrate. In crystalline form it is the previously unreported [trans-Cu(hfac)(2)(H(2)O)(2)].H(2)O (3: P1; at 150 K, a = 8.3899(3), b = 9.6011(3), c = 11.4852(4) A; alpha = 72.397(2), beta = 79.161(2), gamma = 87.843(2) degrees; Z = 2). There is no conclusive evidence in favor of any solid with the composition Cu(hfac)(2).2H(2)O.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA