Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 149(1): 173-87, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22464329

RESUMO

The adult nervous system is plastic, allowing us to learn, remember, and forget. Experience-dependent plasticity occurs at synapses--the specialized points of contact between neurons where signaling occurs. However, the mechanisms that regulate the strength of synaptic signaling are not well understood. Here, we define a Wnt-signaling pathway that modifies synaptic strength in the adult nervous system by regulating the translocation of one class of acetylcholine receptors (AChRs) to synapses. In Caenorhabditis elegans, we show that mutations in CWN-2 (Wnt ligand), LIN-17 (Frizzled), CAM-1 (Ror receptor tyrosine kinase), or the downstream effector DSH-1 (disheveled) result in similar subsynaptic accumulations of ACR-16/α7 AChRs, a consequent reduction in synaptic current, and predictable behavioral defects. Photoconversion experiments revealed defective translocation of ACR-16/α7 to synapses in Wnt-signaling mutants. Using optogenetic nerve stimulation, we demonstrate activity-dependent synaptic plasticity and its dependence on ACR-16/α7 translocation mediated by Wnt signaling via LIN-17/CAM-1 heteromeric receptors.


Assuntos
Caenorhabditis elegans/fisiologia , Receptores Colinérgicos/metabolismo , Via de Sinalização Wnt , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Pareamento Cromossômico , Mutação , Sistema Nervoso , Junção Neuromuscular , Plasticidade Neuronal , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Proteínas Wnt/metabolismo
2.
Proc Natl Acad Sci U S A ; 111(35): E3631-40, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25136135

RESUMO

Defective mitochondrial distribution in neurons is proposed to cause ATP depletion and calcium-buffering deficiencies that compromise cell function. However, it is unclear whether aberrant mitochondrial motility and distribution alone are sufficient to cause neurological disease. Calcium-binding mitochondrial Rho (Miro) GTPases attach mitochondria to motor proteins for anterograde and retrograde transport in neurons. Using two new KO mouse models, we demonstrate that Miro1 is essential for development of cranial motor nuclei required for respiratory control and maintenance of upper motor neurons required for ambulation. Neuron-specific loss of Miro1 causes depletion of mitochondria from corticospinal tract axons and progressive neurological deficits mirroring human upper motor neuron disease. Although Miro1-deficient neurons exhibit defects in retrograde axonal mitochondrial transport, mitochondrial respiratory function continues. Moreover, Miro1 is not essential for calcium-mediated inhibition of mitochondrial movement or mitochondrial calcium buffering. Our findings indicate that defects in mitochondrial motility and distribution are sufficient to cause neurological disease.


Assuntos
Esclerose Lateral Amiotrófica/genética , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Mitocôndrias/fisiologia , Paraplegia/genética , Proteínas rho de Ligação ao GTP/genética , Trifosfato de Adenosina/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Transporte Axonal/fisiologia , Cálcio/metabolismo , Respiração Celular/fisiologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Microtúbulos/metabolismo , Neurônios Motores/metabolismo , Paraplegia/metabolismo , Paraplegia/patologia , Fenótipo , Proteínas rho de Ligação ao GTP/metabolismo
3.
Neuron ; 80(6): 1421-37, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24360545

RESUMO

A primary determinant of the strength of neurotransmission is the number of AMPA-type glutamate receptors (AMPARs) at synapses. However, we still lack a mechanistic understanding of how the number of synaptic AMPARs is regulated. Here, we show that UNC-116, the C. elegans homolog of vertebrate kinesin-1 heavy chain (KIF5), modifies synaptic strength by mediating the rapid delivery, removal, and redistribution of synaptic AMPARs. Furthermore, by studying the real-time transport of C. elegans AMPAR subunits in vivo, we demonstrate that although homomeric GLR-1 AMPARs can diffuse to and accumulate at synapses in unc-116 mutants, glutamate-gated currents are diminished because heteromeric GLR-1/GLR-2 receptors do not reach synapses in the absence of UNC-116/KIF5-mediated transport. Our data support a model in which ongoing motor-driven delivery and removal of AMPARs controls not only the number but also the composition of synaptic AMPARs, and thus the strength of synaptic transmission.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Proteínas de Ciclo Celular/fisiologia , Cinesinas/fisiologia , Receptores de AMPA/metabolismo , Transmissão Sináptica/fisiologia , Animais , Proteínas de Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Cicloeximida/farmacologia , Ácido Glutâmico/farmacologia , Cinesinas/genética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Mutação , Receptores de AMPA/efeitos dos fármacos
4.
Neuron ; 80(1): 129-42, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24094107

RESUMO

The strength of synaptic communication at central synapses depends on the number of ionotropic glutamate receptors, particularly the class gated by the agonist AMPA (AMPARs). Cornichon proteins, evolutionarily conserved endoplasmic reticulum cargo adaptors, modify the properties of vertebrate AMPARs when coexpressed in heterologous cells. However, the contribution of cornichons to behavior and in vivo nervous system function has yet to be determined. Here, we take a genetic approach to these questions by studying CNI-1--the sole cornichon homolog in C. elegans. cni-1 mutants hyperreverse, a phenotype associated with increased glutamatergic synaptic transmission. Consistent with this behavior, we find larger glutamate-gated currents in cni-1 mutants with a corresponding increase in AMPAR number. Furthermore, we observe opposite phenotypes in transgenic worms that overexpress CNI-1 or vertebrate homologs. In reconstitution studies, we provide support for an evolutionarily conserved role for cornichons in regulating the export of vertebrate and invertebrate AMPARs.


Assuntos
Caenorhabditis elegans/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Células Cultivadas , Ácido Glutâmico/metabolismo , Mutação/genética , Neurônios/citologia , Neurônios/metabolismo , Transporte Proteico/fisiologia , Receptores de AMPA/agonistas , Receptores de AMPA/genética , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA