Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 504: 120-127, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37813160

RESUMO

The current gold-standard for genetic lineage tracing in transgenic mice is based on cell-type specific expression of Cre recombinase. As an alternative, we developed a cell-type specific CRISPR/spCas9 system for lineage tracing. This method relies on RNA polymerase II promoter driven self-cleaving guide RNAs (scgRNA) to achieve tissue-specificity. To demonstrate proof-of-principle for this approach a transgenic mouse was generated harbouring a knock-in of a scgRNA into the Cytokeratin 14 (Krt14) locus. Krt14 expression marks the stem cells of squamous epithelium in the skin and oral mucosa. The scgRNA targets a Stop cassette preceding a fluorescent reporter in the Ai9-tdtomato mouse. Ai9-tdtomato reporter mice harbouring this allele along with a spCas9 transgene demonstrated precise marking of the Krt14 lineage. We conclude that RNA polymerase II promoter driven scgRNAs enable the use of CRISPR/spCas9 for genetic lineage tracing.


Assuntos
Sistemas CRISPR-Cas , RNA Polimerase II , Animais , Camundongos , Sistemas CRISPR-Cas/genética , Integrases/genética , Queratina-14/genética , Queratina-14/metabolismo , Camundongos Transgênicos , Regiões Promotoras Genéticas/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
2.
Life Sci ; 309: 120952, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36100080

RESUMO

AIMS: Glucokinase (GK) is expressed in the glucose-sensing cells of the islets of Langerhans and plays a critical role in glucose homeostasis. Here, we tested the hypothesis that genetic activation of GK in a small subset of ß-cells is sufficient to change the glucose set-point of the whole islet. MATERIAL AND METHODS: Mouse models of cell-type specific GK deficiency (GKKO) and genetic enzyme activation (GKKI) in a subset of ß-cells were obtained by crossing the αGSU (gonadotropin alpha subunit)-Cre transgene with the appropriate GK mutant alleles. Metabolic analyses consisted of glucose tolerance tests, perifusion of isolated islets and intracellular calcium measurements. KEY FINDINGS: The αGSU-Cre transgene produced genetically mosaic islets, as Cre was active in 15 ± 1.2 % of ß-cells. While mice deficient for GK in a subset of islet cells were normal, unexpectedly, GKKI mice were chronically hypoglycemic, glucose intolerant, and had a lower threshold for glucose stimulated insulin secretion. GKKI mice exhibited an average fasting blood glucose level of 3.5 mM. GKKI islets responded with intracellular calcium signals that spread through the whole islets at 1 mM and secreted insulin at 3 mM glucose. SIGNIFICANCE: Genetic activation of GK in a minority of ß-cells is sufficient to change the glucose threshold for insulin secretion in the entire islet and thereby glucose homeostasis in the whole animal. These data support the model in which ß-cells with higher GK activity function as 'hub' or 'trigger' cells and thus control insulin secretion by the ß-cell collective within the islet.


Assuntos
Hipoglicemia , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Glucoquinase/genética , Glucoquinase/metabolismo , Células Secretoras de Insulina/metabolismo , Glicemia/metabolismo , Cálcio/metabolismo , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Hipoglicemia/metabolismo , Hipoglicemiantes/metabolismo
3.
Cell Metab ; 34(9): 1394-1409.e4, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36070683

RESUMO

Three-dimensional (3D) chromatin organization maps help dissect cell-type-specific gene regulatory programs. Furthermore, 3D chromatin maps contribute to elucidating the pathogenesis of complex genetic diseases by connecting distal regulatory regions and genetic risk variants to their respective target genes. To understand the cell-type-specific regulatory architecture of diabetes risk, we generated transcriptomic and 3D epigenomic profiles of human pancreatic acinar, alpha, and beta cells using single-cell RNA-seq, single-cell ATAC-seq, and high-resolution Hi-C of sorted cells. Comparisons of these profiles revealed differential A/B (open/closed) chromatin compartmentalization, chromatin looping, and transcriptional factor-mediated control of cell-type-specific gene regulatory programs. We identified a total of 4,750 putative causal-variant-to-target-gene pairs at 194 type 2 diabetes GWAS signals using pancreatic 3D chromatin maps. We found that the connections between candidate causal variants and their putative target effector genes are cell-type stratified and emphasize previously underappreciated roles for alpha and acinar cells in diabetes pathogenesis.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Cromatina , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Regulação da Expressão Gênica , Humanos , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/patologia
4.
Nat Metab ; 4(2): 284-299, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35228745

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease in which immune cells destroy insulin-producing beta cells. The aetiology of this complex disease is dependent on the interplay of multiple heterogeneous cell types in the pancreatic environment. Here, we provide a single-cell atlas of pancreatic islets of 24 T1D, autoantibody-positive and nondiabetic organ donors across multiple quantitative modalities including ~80,000 cells using single-cell transcriptomics, ~7,000,000 cells using cytometry by time of flight and ~1,000,000 cells using in situ imaging mass cytometry. We develop an advanced integrative analytical strategy to assess pancreatic islets and identify canonical cell types. We show that a subset of exocrine ductal cells acquires a signature of tolerogenic dendritic cells in an apparent attempt at immune suppression in T1D donors. Our multimodal analyses delineate cell types and processes that may contribute to T1D immunopathogenesis and provide an integrative procedure for exploration and discovery of human pancreatic function.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Pâncreas/metabolismo , Hormônios Pancreáticos/metabolismo
5.
Nat Metab ; 2(10): 1013-1020, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32895576

RESUMO

The intrahepatic milieu is inhospitable to intraportal islet allografts1-3, limiting their applicability for the treatment of type 1 diabetes. Although the subcutaneous space represents an alternate, safe and easily accessible site for pancreatic islet transplantation, lack of neovascularization and the resulting hypoxic cell death have largely limited the longevity of graft survival and function and pose a barrier to the widespread adoption of islet transplantation in the clinic. Here we report the successful subcutaneous transplantation of pancreatic islets admixed with a device-free islet viability matrix, resulting in long-term euglycaemia in diverse immune-competent and immuno-incompetent animal models. We validate sustained normoglycaemia afforded by our transplantation methodology using murine, porcine and human pancreatic islets, and also demonstrate its efficacy in a non-human primate model of syngeneic islet transplantation. Transplantation of the islet-islet viability matrix mixture in the subcutaneous space represents a simple, safe and reproducible method, paving the way for a new therapeutic paradigm for type 1 diabetes.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 1/cirurgia , Transplante das Ilhotas Pancreáticas/métodos , Tela Subcutânea/cirurgia , Animais , Diabetes Mellitus Experimental/cirurgia , Transportador de Glucose Tipo 2/biossíntese , Transportador de Glucose Tipo 2/genética , Sobrevivência de Enxerto , Xenoenxertos , Humanos , Macaca fascicularis , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Suínos
6.
Cell Mol Gastroenterol Hepatol ; 2(2): 175-188, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26949732

RESUMO

BACKGROUND & AIMS: Intestinal epithelial stem cells that express Lgr5 and/or Bmi1 continuously replicate and generate differentiated cells throughout life1. Previously, Paneth cells were suggested to constitute an epithelium-intrinsic niche that regulates the behavior of these stem cells2. However, ablating Paneth cells has no effect on maintenance of functional stem cells3-5. Here, we demonstrate definitively that a small subset of mesenchymal, subepithelial cells expressing the winged-helix transcription factor Foxl1 are a critical component of the intestinal stem cell niche. METHODS: We genetically ablated Foxl1+ mesenchymal cells in adult mice using two separate models by expressing either the human or simian diphtheria toxin receptor (DTR) under Foxl1 promoter control. CONCLUSIONS: Killing Foxl1+ cells by diphtheria toxin administration led to an abrupt cessation of proliferation of both epithelial stem- and transit-amplifying progenitor-cell populations that was associated with a loss of active Wnt signaling to the intestinal epithelium. Therefore, Foxl1-expressing mesenchymal cells constitute the fundamental niche for intestinal stem cells.

7.
Diabetes ; 63(12): 4206-17, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25028525

RESUMO

Islet-1 (Isl-1) is essential for the survival and ensuing differentiation of pancreatic endocrine progenitors. Isl-1 remains expressed in all adult pancreatic endocrine lineages; however, its specific function in the postnatal pancreas is unclear. Here we determine whether Isl-1 plays a distinct role in the postnatal ß-cell by performing physiological and morphometric analyses of a tamoxifen-inducible, ß-cell-specific Isl-1 loss-of-function mouse: Isl-1(L/L); Pdx1-CreER(Tm). Ablating Isl-1 in postnatal ß-cells reduced glucose tolerance without significantly reducing ß-cell mass or increasing ß-cell apoptosis. Rather, islets from Isl-1(L/L); Pdx1-CreER(Tm) mice showed impaired insulin secretion. To identify direct targets of Isl-1, we integrated high-throughput gene expression and Isl-1 chromatin occupancy using islets from Isl-1(L/L); Pdx1-CreER(Tm) mice and ßTC3 insulinoma cells, respectively. Ablating Isl-1 significantly affected the ß-cell transcriptome, including known targets Insulin and MafA as well as novel targets Pdx1 and Slc2a2. Using chromatin immunoprecipitation sequencing and luciferase reporter assays, we found that Isl-1 directly occupies functional regulatory elements of Pdx1 and Slc2a2. Thus Isl-1 is essential for postnatal ß-cell function, directly regulates Pdx1 and Slc2a2, and has a mature ß-cell cistrome distinct from that of pancreatic endocrine progenitors.


Assuntos
Resistência à Insulina/genética , Células Secretoras de Insulina/metabolismo , Proteínas com Homeodomínio LIM/genética , Elementos Reguladores de Transcrição/genética , Fatores de Transcrição/genética , Animais , Apoptose/genética , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Teste de Tolerância a Glucose , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Insulina/genética , Insulina/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Camundongos , Camundongos Knockout , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
8.
Mol Endocrinol ; 24(8): 1605-14, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20592160

RESUMO

The major role of glucagon is to promote hepatic gluconeogenesis and glycogenolysis to raise blood glucose levels during hypoglycemic conditions. Several animal models have been established to examine the in vivo function of glucagon in the liver through attenuation of glucagon via glucagon receptor knockout animals and pharmacological interventions. To investigate the consequences of glucagon loss to hepatic glucose production and glucose homeostasis, we derived mice with a pancreas specific ablation of the alpha-cell transcription factor, Arx, resulting in a complete loss of the glucagon-producing pancreatic alpha-cell. Using this model, we found that glucagon is not required for the general health of mice but is essential for total hepatic glucose production. Our data clarifies the importance of glucagon during the regulation of fasting and postprandial glucose homeostasis.


Assuntos
Glicemia/metabolismo , Células Secretoras de Glucagon/citologia , Glucagon/fisiologia , Proteínas de Homeodomínio/fisiologia , Fatores de Transcrição/fisiologia , Animais , Western Blotting , Glucagon/deficiência , Proteínas de Homeodomínio/genética , Células Secretoras de Insulina/citologia , Masculino , Camundongos , Camundongos Mutantes , Células Secretoras de Polipeptídeo Pancreático/citologia , Reação em Cadeia da Polimerase , Células Secretoras de Somatostatina/citologia , Fatores de Transcrição/genética
9.
Mech Dev ; 126(8-9): 687-99, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19501159

RESUMO

Pancreatic endocrine cells originate from precursors that express the transcription factor Neurogenin3 (Ngn3). Ngn3 expression is repressed by active Notch signaling. Accordingly, mice with Notch signaling pathway mutations display increased Ngn3 expression and endocrine cell lineage allocation. To determine how the Notch ligand Jagged1 (Jag1) functions during pancreas development, we deleted Jag1 in foregut endoderm and examined postnatal and embryonic endocrine cells and precursors. Postnatal Jag1 mutants display increased Ngn3 expression, alpha-cell mass, and endocrine cell percentage, similar to the early embryonic phenotype of Dll1 and Rbpj mutants. However, in sharp contrast to postnatal animals, Jag1-deficient embryos display increased expression of Notch transcriptional targets and decreased Ngn3 expression, resulting in reduced endocrine lineage allocation. Jag1 acts as an inhibitor of Notch signaling during embryonic pancreas development but an activator of Notch signaling postnatally. Expression of the Notch modifier Manic Fringe (Mfng) is limited to endocrine precursors, providing a possible explanation for the inhibition of Notch signaling by Jag1 during mid-gestation embryonic pancreas development.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Proteínas de Membrana/fisiologia , Pâncreas/embriologia , Receptores Notch/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem da Célula , Células Endócrinas/metabolismo , Genótipo , Proteínas de Fluorescência Verde/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína Jagged-1 , Proteínas de Membrana/metabolismo , Camundongos , Modelos Biológicos , Mutação , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Serrate-Jagged , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA