Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 102(1): 167-174, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34080199

RESUMO

BACKGROUND: Nowadays a significant amount of land contaminated with toxic elements is being used for agriculture, posing a serious risk of crop contamination and toxicity. Several methodologies are being used to remediate soil contamination, including the use of amendments such as biochar. This work evaluated the effects of biochar combined with different fertirrigations (water, a conventional fertilizer solution, or a fertilizer solution with a commercial biostimulant derived from leonardite) on the availability of toxic elements and nutrients for pepper cultivated in a soil contaminated with As, Cd, Pb, and Zn. RESULTS: Irrigation with fertilizer solutions improved plant growth regardless of the biochar amendment. Biochar decreased the bioavailability of Cu and Pb in soil and the Cu content in pepper leaves. Combined with fertilization, biochar also decreased plant As and Pb content. Biochar combined with biostimulant decreased the bioavailable content of Cd in soil and its uptake by pepper plants. CONCLUSION: The use of biochar and biostimulant presented advantages for plant production in a non-suitable scenario of nutrient scarcity and contamination. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Capsicum/metabolismo , Carvão Vegetal/química , Produção Agrícola/métodos , Fertilizantes/análise , Nutrientes/química , Poluentes do Solo/metabolismo , Adsorção , Transporte Biológico , Cádmio/química , Cádmio/metabolismo , Capsicum/química , Capsicum/crescimento & desenvolvimento , Chumbo/análise , Chumbo/química , Chumbo/metabolismo , Nutrientes/metabolismo , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Solo/química , Poluentes do Solo/química , Zinco/química , Zinco/metabolismo
2.
J Hazard Mater ; 473: 134650, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38776816

RESUMO

Spent mushroom substrate (SMS) holds valuable microbiota that can be useful in remediating polluted soils with hydrocarbons. However, the microorganisms behind the bioremediation process remain uncertain. In this work, a bioremediation assay of total petroleum hydrocarbons (TPHs) polluted soil by SMS application was performed to elucidate the microorganisms and consortia involved in biodegradation by a metabarcoding analysis. Untreated polluted soil was compared to seven bioremediation treatments by adding SMS of Agaricus bisporus, Pleurotus eryngii, Pleurotus ostreatus, and combinations. Soil microbial activity, TPH biodegradation, taxonomic classification, and predictive functional analysis were evaluated in the microbiopiles at 60 days. Different metagenomics approaches were performed to understand the impact of each SMS on native soil microbiota and TPHs biodegradation. All SMSs enhanced the degradation of aliphatic and aromatic hydrocarbons, being A. bisporus the most effective, promoting an efficient consortium constituted by the bacterial families Alcanivoraceae, Alcaligenaceae, and Dietziaceae along with the fungal genera Scedosporium and Aspergillus. The predictive 16 S rRNA gene study partially explained the decontamination efficacy by observing changes in the taxonomic structure of bacteria and fungi, and changes in the potential profiles of estimated degradative genes across the different treatments. This work provides new insights into TPHs bioremediation.


Assuntos
Bactérias , Biodegradação Ambiental , Hidrocarbonetos , Petróleo , Microbiologia do Solo , Poluentes do Solo , Poluentes do Solo/metabolismo , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Agaricus/metabolismo , Fungos/metabolismo , Fungos/genética , Pleurotus/metabolismo , Agaricales/metabolismo , RNA Ribossômico 16S/genética
3.
Front Plant Sci ; 13: 1017925, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582635

RESUMO

Introduction: A sustainable agriculture and the great increase in consumers of organic products in the last years make the use of natural products one of the main challenges of modern agriculture. This is the reason that the use of products based on seaweed extracts has increased exponentially, specifically brown seaweeds, including Ascophyllum nodosum and Ecklonia maxima. Methods: In this study, the chemical composition of 20 commercial seaweed extract products used as biostimulants and their antifungal activity against two common postharvest pathogens (Botrytis cinerea and Penicillium digitatum) from fruits were evaluated. Data were processed using chemometric techniques based on linear and non-linear models. Results and discussion: The results showed that the algae species and the percentage of seaweed had a significant effect on the final composition of the products. In addition, great disparity was observed between formulations with similar labeling and antifungal effect of most of the analyzed products against some of the tested pathogens. These findings indicate the need for further research.

4.
Environ Sci Pollut Res Int ; 28(6): 7032-7042, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33025433

RESUMO

A double strategy based on the removal of sulfonamide antibiotics by Pleurotus ostreatus and adsorption on spent mushroom substrate was assessed to reclaim contaminated wastewater. P. ostreatus was firstly tested in a liquid medium fortified with five sulfonamides: sulfamethoxazole, sulfadiazine, sulfathiazole, sulfapyridine and sulfamethazine, to evaluate its capacity to remove them and to test for any adverse effects on fungal growth and for any reduction in residual antibiotic activity. P. ostreatus was effective in removing sulfonamides up to 83 to 91% of the applied doses over 14 days. The antibiotic activity of the sulfonamide residues was reduced by 50%. Sulfamethoxazole transformation products by laccase were identified, and the degradation pathway was proposed. In addition, P. ostreatus growth on a semi-solid medium of spent mushroom substrate and malt extract agar was used to develop a biofilter for the removal of sulfonamides from real wastewater. The biofilter was able to remove more than 90% of the sulfonamide concentrations over 24 h by combining adsorption and biodegradation mechanisms.


Assuntos
Agaricales , Pleurotus , Biodegradação Ambiental , Lacase , Sulfonamidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA