Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Mol Biol ; 93(4-5): 451-463, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28032251

RESUMO

KEY MESSAGE: This study addresses T-DNA insert stability and transgene expression consistency in multiple cycles of field propagated sugarcane. T-DNA inserts are stable; no transgene rearrangements were observed. AmCYAN1 and PMI protein accumulation levels were maintained. There was no evidence that production of either protein declined across generations and no transgene silencing was observed in three commercial sugarcane varieties through commercially relevant ratooning, propagation-by-setts, and micro-propagation generation processes over 4 years of field testing. Long term transgene expression consistency and T-DNA insert stability can be achieved in sugarcane, suggesting that it is highly probable that transgenic sugarcane can be successfully commercialized. This study addresses T-DNA insert stability and transgene expression consistency in multiple cycles of field propagated sugarcane. These data are critical supporting information needed for successful commercialization of GM sugarcane. Here seventeen transgenic events, containing the AmCYAN1 gene driven by a CMP promoter and the E. coli PMI gene driven by either a CMP or Ubi promoter, were used to monitor T-DNA insert stability and consistency of transgene encoded protein accumulation through commercially relevant ratooning, propagation-by-setts, and micro-propagation generation processes. The experiments were conducted in three commercial sugarcane varieties over 4 years of field testing. DNA gel blot analysis showed that the T-DNA inserts are stable; no transgene rearrangements were observed. Quantitative ELISA showed no evidence of decreasing AmCYAN1 and PMI protein levels across generations and no transgene silencing was observed. These results indicate that long term transgene expression consistency and T-DNA insert stability can be achieved in sugarcane, suggesting that it is highly probable that transgenic sugarcane can be successfully commercialized.


Assuntos
DNA Bacteriano/genética , Expressão Gênica , Plantas Geneticamente Modificadas/genética , Saccharum/genética , Transgenes/genética , Animais , Ensaio de Imunoadsorção Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Engenharia Genética/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Manose-6-Fosfato Isomerase/genética , Manose-6-Fosfato Isomerase/metabolismo , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes , Saccharum/crescimento & desenvolvimento , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/metabolismo , Fatores de Tempo
2.
OMICS ; 6(3): 235-46, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12427275

RESUMO

One of the goals of cancer chemotherapy and prevention is the discovery of compounds that are relatively selective to tumor cells and, therefore, have reduced effects on normal cell growth. In previously published studies, it was shown that certain triterpene saponins (called avicins) from a desert tree, Acacia victoriae, are selectively toxic to tumor cells at very low doses (IC(50): 0.2 microg/mL for Jurkat cells). To extend this research to human clinical studies, we needed to find a reliable supply of avicins and have developed a transformed "hairy root" culture as a means of biomass production. Protocols were optimized for A. victoriae micropropagation; after a boiling water treatment, A. victoriae seeds were maintained under in vitro conditions on defined media. Embryo-axis explants from shoot tips were removed and infected with Agrobacterium rhizogenes Conn (R 1000) for hairy root induction. Plasmid integration was confirmed by PCR analysis with a primer set for a segment of the rol B gene. Culture conditions have been optimized for root biomass production, and various inducers have been investigated for enhancement of avicin production. Hairy root cultures were compared with intact pod tissue from field-grown sources for avicin content following partial purification of triterpene glycosides and HPLC separation of the secondary metabolites. From bioassays of the collected HPLC fractions, we have identified putative triterpene "metabolic clusters" with enhanced activity against tumor cells. This now provides a system for both production of clinical trial lots of active samples, but also a means to correlate structure of individual triterpene glycosides with specific cellular target activity in mammalian cells.


Assuntos
Glicosídeos/química , Glicosídeos/metabolismo , Plantas/metabolismo , Saponinas/química , Acacia/metabolismo , Antineoplásicos/farmacologia , Apoptose , Divisão Celular , Cromatografia Líquida de Alta Pressão , Humanos , Concentração Inibidora 50 , Células Jurkat , Modelos Químicos , NF-kappa B/metabolismo , Ácido Palmítico/farmacologia , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Rhizobium/metabolismo , Saponinas/análise , Saponinas/metabolismo , Ácido Succínico/farmacologia , Fatores de Tempo , Triterpenos/química
4.
Nat Protoc ; 1(3): 1105-11, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17406390

RESUMO

This protocol is used to produce stably transformed tobacco (Nicotiana tabacum) NT1 cell lines, using Agrobacterium tumefaciens-mediated DNA delivery of a binary vector containing a gene encoding hepatitis B surface antigen and a gene encoding the kanamycin selection marker. The NT1 cultures, at the appropriate stage of growth, are inoculated with A. tumefaciens containing the binary vector. A 3-day cocultivation period follows, after which the cultures are rinsed and placed on solid selective medium. Transformed colonies ('calli') appear in approximately 4 weeks; they are subcultured until adequate material is obtained for analysis of antigen production. 'Elite' lines are selected based on antigen expression and growth characteristics. The time required for the procedure from preparation of the plant cell materials to callus development is approximately 5 weeks. Growth of selected calli to sufficient quantities for antigen screening may require 4-6 weeks beyond the initial selection. Creation of the plasmid constructs, transformation of the A. tumefaciens line, and ELISA and Bradford assays to assess protein production require additional time.


Assuntos
Técnicas de Cultura de Células/métodos , Técnicas de Transferência de Genes , Nicotiana/genética , Transformação Genética/genética , Agrobacterium tumefaciens , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Vetores Genéticos/genética , Antígenos de Superfície da Hepatite B/metabolismo , Canamicina/metabolismo , Nicotiana/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA