Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Plant J ; 107(3): 893-908, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34036648

RESUMO

Ethylene modulates plant developmental processes including flower development. Previous studies have suggested ethylene participates in pollen tube (PT) elongation, and both ethylene production and perception seem critical at the time of fertilization. The full gene set regulated by ethylene during PT growth is unknown. To study this, we used various EThylene Receptor (ETR) tomato (Solanum lycopersicum) mutants: etr3-ko, a loss-of-function (LOF) mutant; and NR (NEVER RIPE), a gain-of-function (GOF) mutant. The etr3-ko PTs grew faster than wild-type (WT) PTs. Oppositely, NR PT elongation was slower than in WT, and PTs displayed larger diameters. ETR mutations result in feedback control of ethylene production. Furthermore, ethylene treatment of germinating pollen grains increased PT length in etr-ko mutants and WT, but not in NR. Treatment with the ethylene perception inhibitor 1-methylcyclopropene decreased PT length in etr-ko mutants and WT, but had no effect on NR. This confirmed that ethylene regulates PT growth. The comparison of PT transcriptomes in LOF and GOF mutants, etr3-ko and NR, both harboring mutations of the ETR3 gene, revealed that ethylene perception has major impacts on cell wall- and calcium-related genes as confirmed by microscopic observations showing a modified distribution of the methylesterified homogalacturonan pectic motif and of calcium load. Our results establish links between PT growth, ethylene, calcium, and cell wall metabolism, and also constitute a transcriptomic resource.


Assuntos
Cálcio/metabolismo , Parede Celular/fisiologia , Etilenos/metabolismo , Proteínas de Plantas/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Cálcio/química , Ciclopropanos/farmacologia , Regulação da Expressão Gênica de Plantas/fisiologia , Solanum lycopersicum/genética , Mutação , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Tubo Polínico/metabolismo , Polinização/fisiologia , Transdução de Sinais , Transcriptoma
2.
Plant Physiol ; 181(4): 1449-1458, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31554701

RESUMO

NADP(H) is an essential cofactor of multiple metabolic processes in all living organisms, and in plants, NADP(H) is required as the substrate of Ca2+-dependent NADPH oxidases, which catalyze a reactive oxygen species burst in response to various stimuli. While NADP+ production in plants has long been known to involve a calmodulin (CaM)/Ca2+-dependent NAD+ kinase, the nature of the enzyme catalyzing this activity has remained enigmatic, as has its role in plant physiology. Here, we used proteomic, biochemical, molecular, and in vivo analyses to identify an Arabidopsis (Arabidopsis thaliana) protein that catalyzes NADP+ production exclusively in the presence of CaM/Ca2+ This enzyme, which we named NAD kinase-CaM dependent (NADKc), has a CaM-binding peptide located in its N-terminal region and displays peculiar biochemical properties as well as different domain organization compared with known plant NAD+ kinases. In response to a pathogen elicitor, the activity of NADKc, which is associated with the mitochondrial periphery, contributes to an increase in the cellular NADP+ concentration and to the amplification of the elicitor-induced oxidative burst. Based on a phylogenetic analysis and enzymatic assays, we propose that the CaM/Ca2+-dependent NAD+ kinase activity found in photosynthetic organisms is carried out by NADKc-related proteins. Thus, NADKc represents the missing link between Ca2+ signaling, metabolism, and the oxidative burst.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Explosão Respiratória , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Cálcio/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Flagelina/metabolismo , Cinética , Mitocôndrias/metabolismo , Modelos Biológicos , Peptídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fotossíntese , Filogenia , Ligação Proteica , Domínios Proteicos , Plântula/metabolismo
3.
Biosci Biotechnol Biochem ; 83(2): 318-321, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30345896

RESUMO

Dimethyl sulfoxide (DMSO) is a dipolar aprotic solvent widely used in biological assays. Here, we observed that DMSO enhanced the hypo-osmotically induced increases in the concentration of Ca2+ in cytosolic and nucleic compartments in the transgenic cell-lines of tobacco (BY-2) expressing aequorin.


Assuntos
Cálcio/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Dimetil Sulfóxido/administração & dosagem , Nicotiana/metabolismo , Pressão Osmótica , Equorina/metabolismo , Compartimento Celular , Luminescência , Plantas Geneticamente Modificadas , Nicotiana/citologia
4.
Int J Mol Sci ; 19(3)2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29495448

RESUMO

Calcium (Ca2+) is a universal second messenger involved in various cellular processes, leading to plant development and to biotic and abiotic stress responses. Intracellular variation in free Ca2+ concentration is among the earliest events following the plant perception of environmental change. These Ca2+ variations differ in their spatio-temporal properties according to the nature, strength and duration of the stimulus. However, their conversion into biological responses requires Ca2+ sensors for decoding and relaying. The occurrence in plants of calmodulin (CaM) but also of other sets of plant-specific Ca2+ sensors such as calmodulin-like proteins (CMLs), Ca2+-dependent protein kinases (CDPKs) and calcineurin B-like proteins (CBLs) indicate that plants possess specific tools and machineries to convert Ca2+ signals into appropriate responses. Here, we focus on recent progress made in monitoring the generation of Ca2+ signals at the whole plant or cell level and their long distance propagation during biotic interactions. The contribution of CaM/CMLs and CDPKs in plant immune responses mounted against bacteria, fungi, viruses and insects are also presented.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Plantas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Calmodulina/metabolismo , Resistência à Doença/imunologia , Imunidade , Doenças das Plantas/etiologia , Fenômenos Fisiológicos Vegetais , Plantas/imunologia , Estresse Fisiológico , Simbiose
5.
Plant Cell Physiol ; 58(2): 307-319, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27837097

RESUMO

Calcium is a universal second messenger involved in various cellular processes including plant development and stress responses. Its conversion into biological responses requires the presence of calcium sensor relays such as calmodulin (CaM) and calmodulin-like (CML) proteins. While the role of CaM is well described, the functions CML proteins remain largely uncharacterized. Here, we show that Arabidopsis CML8 expression is strongly and transiently induced by Pseudomonas syringae, and reverse genetic approaches indicated that the overexpression of CML8 confers on plants a better resistance to pathogenic bacteria compared with wild-type, knock-down and knock-out lines, indicating that CML8 participates as a positive regulator in plant immunity. However, this difference disappeared when inoculations were performed using bacteria unable to inject effectors into a plant host cell or deficient for some effectors known to target the salicylic acid (SA) signaling pathway. SA content and PR1 protein accumulation were altered in CML8 transgenic lines, supporting a role for CML8 in SA-dependent processes. Pathogen-associated molecular pattern (PAMP) treatments with flagellin and elf18 peptides have no effects on CML8 gene expression and do not modify root growth of CML8 knock-down and overexpressing lines compared with wild-type plants. Collectively, our results support a role for CML8 in plant immunity against P. syringae.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Imunidade Vegetal/genética , Pseudomonas syringae/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Calmodulina/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Ácido Salicílico/metabolismo
6.
Plant Cell Physiol ; 57(10): 2221-2231, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27585463

RESUMO

Sphinganine or dihydrosphingosine (d18:0, DHS), one of the most abundant free sphingoid long chain bases (LCBs) in plants, is known to induce a calcium-dependent programmed cell death (PCD) in plants. In addition, in tobacco BY-2 cells, it has been shown that DHS triggers a rapid production of H2O2 and nitric oxide (NO). Recently, in analogy to what is known in the animal field, plant cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC), a ubiquitous enzyme involved in glycolysis, has been suggested to fulfill other functions associated with its oxidative post-translational modifications such as S-nitrosylation on cysteine residues. In particular, in mammals, stress signals inducing NO production promote S-nitrosylation of GAPC and its subsequent translocation into the nucleus where the protein participates in the establishment of apoptosis. In the present study, we investigated the behavior of GAPC in tobacco BY-2 cells treated with DHS. We found that upon DHS treatment, an S-nitrosylated form of GAPC accumulated in the nucleus. This accumulation was dependent on NO production. Two genes encoding GAPCs, namely Nt(BY-2)GAPC1 and Nt(BY-2)GAPC2, were cloned. Transient overexpression of Nt(BY-2)GAPC-green fluorescent protein (GFP) chimeric constructs indicated that both proteins localized in the cytoplasm as well as in the nucleus. Mutating into serine the two cysteine residues thought to be S-nitrosylated in response to DHS did not modify the localization of the proteins, suggesting that S-nitrosylation of GAPCs was probably not necessary for their nuclear relocalization. Interestingly, using Förster resonance energy transfer experiments, we showed that Nt(BY-2)GAPCs interact with nucleic acids in the nucleus. When GAPCs were mutated on their cysteine residues, their interaction with nucleic acids was abolished, suggesting a role for GAPCs in the protection of nucleic acids against oxidative stress.


Assuntos
Cálcio/farmacologia , Núcleo Celular/enzimologia , Citosol/enzimologia , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Nicotiana/citologia , Óxido Nítrico/farmacologia , Células Vegetais/enzimologia , Esfingosina/análogos & derivados , Sequência de Aminoácidos , Núcleo Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Genes de Plantas , Gliceraldeído-3-Fosfato Desidrogenases/química , Gliceraldeído-3-Fosfato Desidrogenases/genética , Espectrometria de Massas , Mutação/genética , Nitrosação , Ácidos Nucleicos/metabolismo , Células Vegetais/efeitos dos fármacos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica/efeitos dos fármacos , Esfingosina/farmacologia , Nicotiana/enzimologia , Nicotiana/genética
7.
Biochim Biophys Acta ; 1833(7): 1590-4, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23219859

RESUMO

An increase in cellular calcium ion (Ca(2+)) concentration is now acknowledged to be one of the earliest events occurring during the induction of plant defence responses to a wide variety of pathogens. Sphingoid long-chain bases (LCBs) have also been recently demonstrated to be important mediators of defence-related programmed cell death during pathogen attack. Here, we present recent data highlighting how Ca(2+) and LCBs may be interconnected to regulate cellular processes which lead either to plant susceptibility or to resistance mechanisms. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.


Assuntos
Cálcio/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Plantas/metabolismo , Transdução de Sinais , Esfingolipídeos/metabolismo , Doenças das Plantas/imunologia , Plantas/microbiologia , Plantas/virologia
8.
Adv Exp Med Biol ; 740: 1123-43, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22453986

RESUMO

Calcium is a key second messenger in signaling pathways associated with developmental and adaptive processes in plants. Stimulus-specific calcium signals, considered as calcium signatures, are translated into appropriate cellular responses through the action of various calcium-binding proteins and downstream effectors. We review here recent progress made in calcium signaling in the nucleus of plant cell. Experimental evidences show that nuclei can generate calcium signals on their own and point out the importance of calcium in the regulation of gene transcription. Future directions are given concerning the need to elucidate the mechanisms involved in the regulation of nuclear calcium homeostasis, the conversion of calcium signals into transcriptional responses or other fundamental downstream nuclear functions. Overall, a better understanding of nuclear signaling will be useful to get an integrated picture of the signaling network of the plant cell.


Assuntos
Sinalização do Cálcio/fisiologia , Núcleo Celular/metabolismo , Plantas/metabolismo , Transcrição Gênica , Cálcio/metabolismo , Calmodulina/metabolismo , Citosol/metabolismo , Homeostase , Processamento de Proteína Pós-Traducional
9.
Plant Cell Environ ; 34(1): 149-61, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20946589

RESUMO

Plant cells use calcium-based signalling pathways to transduce biotic and/or abiotic stimuli into adaptive responses. However, little is known about the coupling between calcium signalling, transcriptional regulation and the downstream biochemical processes. To understand these relationships better, we challenged tobacco BY-2 cells with cryptogein and evaluated how calcium transients (monitored through the calcium sensor aequorin) impact (1) transcript levels of phenylpropanoid genes (assessed by RT-qPCR); and (2) derived-phenolic compounds (analysed by mass spectrometry). Most genes of the phenylpropanoid pathway were up-regulated by cryptogein and cell wall-bound phenolic compounds accumulated (mainly 5-hydroxyferulic acid). The accumulation of both transcripts and phenolics was calcium-dependent. The transcriptional regulation of phenylpropanoid genes was correlated in a non-linear manner with stimulus intensity and with components of the cryptogein-induced calcium signature. In addition, calmodulin inhibitors increased the sensitivity of cells to low concentrations of cryptogein. These results led us to propose a model of coupling between the cryptogein signal, calcium signalling and the transcriptional response, exerting control of transcription through the coordinated action of two decoding modules exerting opposite effects.


Assuntos
Proteínas de Algas/metabolismo , Cálcio/farmacologia , Nicotiana/efeitos dos fármacos , Nicotiana/metabolismo , Propanóis/metabolismo , Proteínas de Algas/farmacologia , Cálcio/metabolismo , Calmodulina/antagonistas & inibidores , Células Cultivadas , Ácidos Cumáricos/metabolismo , Proteínas Fúngicas , Regulação da Expressão Gênica de Plantas , Espectrometria de Massas , Imunidade Vegetal , Plantas Geneticamente Modificadas , Análise de Componente Principal , Propionatos , RNA de Plantas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Nicotiana/genética , Regulação para Cima
10.
Biochim Biophys Acta ; 1793(6): 1068-77, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19133300

RESUMO

Calcium (Ca2+) is a ubiquitous second messenger which promotes cell responses through transient changes in intracellular concentrations. The prominent role of Ca2+ in cell physiology is mediated by a whole set of proteins constituting a Ca2+-signalling toolkit involved in Ca2+-signal generation, deciphering and arrest. The different Ca2+-signalosomes deliver Ca2+-signals with spatial and temporal dynamics to control the function of specific cell types. Among the intracellular proteins involved in Ca2+-signal deciphering, calmodulin (CaM) plays a pivotal role in controlling Ca2+-homeostasis and downstream Ca2+-based signalling events. Due to its ubiquitous expression in eukaryotic cells and the variety of proteins it interacts with, CaM is central in Ca2+-signalling networks. For these reasons, it is expected that disrupting or modifying CaM interactions with its target proteins will affect Ca2+-homeostasis and cellular responses. The resulting calcium response will vary depending on which interactions between CaM and target proteins are altered by the molecules and on the specific Ca2+-toolkit expressed in a given cell, even in the resting state. In the present paper, the effect of six classical CaM interactors (W5, W7, W12, W13, bifonazole and calmidazolium) was studied on Ca2+-signalling in tumor initiating cells isolated from human glioblastoma (TG1) and tobacco cells (BY-2) using the fluorescent Ca2+-sensitive Indo-1 dye and aequorin, respectively. Various Ca2+-fingerprints were obtained depending both on the CaM interactor used and the cell type investigated. These data demonstrate that interaction between the antagonists and CaM results in a differential inhibition of CaM-dependent proteins involved in Ca2+-signal regulation. In addition, the distinct Ca2+-fingerprints in tobacco and human tumor initiating glioblastoma cells induced by a given CaM interactor highlight the specificity of the Ca2+-signalosome in eukaryotic cells.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Calmodulina/metabolismo , Células Eucarióticas/metabolismo , Anisotropia , Calmodulina/antagonistas & inibidores , Linhagem Celular , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Imidazóis/química , Imidazóis/metabolismo , Estrutura Molecular , Espectrometria de Fluorescência , Sulfonamidas/química , Sulfonamidas/metabolismo , Nicotiana
11.
Plant J ; 59(2): 193-206, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19392691

RESUMO

Calcium (Ca2+), as a second messenger, is crucial for signal transduction processes during many biotic interactions. We demonstrate that cellular [Ca2+] elevations are early events in the interaction between the plant growth-promoting fungus Piriformospora indica and Arabidopsis thaliana. A cell wall extract (CWE) from the fungus promotes the growth of wild-type seedlings but not of seedlings from P. indica-insensitive mutants. The extract and the fungus also induce a similar set of genes in Arabidopsis roots, among them genes with Ca2+ signalling-related functions. The CWE induces a transient cytosolic Ca2+ ([Ca2+](cyt)) elevation in the roots of Arabidopsis and tobacco (Nicotiana tabacum) plants, as well as in BY-2 suspension cultures expressing the Ca2+ bioluminescent indicator aequorin. Nuclear Ca2+ transients were also observed in tobacco BY-2 cells. The Ca2+ response was more pronounced in roots than in shoots and involved Ca2+ uptake from the extracellular space as revealed by inhibitor studies. Inhibition of the Ca2+ response by staurosporine and the refractory nature of the Ca2+ elevation suggest that a receptor may be involved. The CWE does not stimulate H2O2 production and the activation of defence gene expression, although it led to phosphorylation of mitogen-activated protein kinases (MAPKs) in a Ca2+-dependent manner. The involvement of MAPK6 in the mutualistic interaction was shown for an mpk6 line, which did not respond to P. indica. Thus, Ca2+ is likely to be an early signalling component in the mutualistic interaction between P. indica and Arabidopsis or tobacco.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Basidiomycota/química , Cálcio/metabolismo , Parede Celular/química , Raízes de Plantas/metabolismo , Equorina/genética , Equorina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Linhagem Celular , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo
12.
New Phytol ; 181(2): 261-274, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19130634

RESUMO

In plant cells, calcium-based signaling pathways are involved in a large array of biological processes, including cell division, polarity, growth, development and adaptation to changing biotic and abiotic environmental conditions. Free calcium changes are known to proceed in a nonstereotypical manner and produce a specific signature, which mirrors the nature, strength and frequency of a stimulus. The temporal aspects of calcium signatures are well documented, but their vectorial aspects also have a profound influence on biological output. Here, we will focus on the regulation of calcium homeostasis in the nucleus. We will discuss data and present hypotheses suggesting that, while interacting with other organelles, the nucleus has the potential to generate and regulate calcium signals on its own.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Núcleo Celular/metabolismo , Células Vegetais , Sinalização do Cálcio/genética , Citosol/metabolismo , Homeostase/fisiologia , Transdução de Sinais
13.
J Exp Bot ; 60(4): 1387-98, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19218316

RESUMO

Calcium-mediated signalling is ubiquitous in both animals and plants. Changes in cytoplasmic free Ca(2+) concentration couple diverse arrays of stimuli to their specific responses, the specificity of the stimulus being determined by integrated actions between multiple Ca(2+) mobilization pathways. In this work, a pharmacological approach is reported, aimed at deciphering the role of calcium as a second messenger in the transduction pathway leading to the inhibitory effect of 2,4-dichlorophenoxyacetic acid (2,4-D), in regulating monoterpene indole alkaloid (MIA) biosynthesis in Catharanthus roseus cells. It is demonstrated here that auxin-dependent MIA biosynthesis is differentially regulated by two distinct calcium release components from internal stores in C. roseus showing pharmacological profiles similar to those displayed by animal RyR and IP3 channels. MIA biosynthesis is stimulated by caffeine (Ca(2+)-release activator through RyR channels) and by heparin and TMB8 (Ca(2+)-release inhibitors of IP3 channels) whereas MIA biosynthesis is inhibited by mastoparan (Ca(2+)-release activator of IP3 channels) and by ruthenium red and DHBP (Ca(2+)-release inhibitors of RyR channels). Furthermore, calcium, as 2,4-D, acts on MIA biosynthesis by regulating the monoterpene moiety of the MIA biosynthesis pathway since calcium channel modulators preferentially modulate g10h expression, the gene encoding the enzyme of the secoiridoid monoterpene pathway, that is the major target of 2,4-D action. In addition, the simultaneous use of caffeine (an activator of RyR channel in animals) and TMB8 (an inhibitor of the IP3 channel) in 2,4-D treated cells triggers a synergistic effect on MIA accumulation. This finding suggests an opposite and co-ordinated action of multiple Ca(2+)-release pathways in 2,4-D signal transduction, adding a new level of complexity to calcium signalling in plants and questioning the existence of RyR and IP3 channels in plants.


Assuntos
Cálcio/metabolismo , Catharanthus/citologia , Catharanthus/metabolismo , Ácidos Indolacéticos/metabolismo , Espaço Intracelular/metabolismo , Monoterpenos/metabolismo , Ácido 2,4-Diclorofenoxiacético/farmacologia , Animais , Cafeína/farmacologia , Canais de Cálcio/metabolismo , Catharanthus/efeitos dos fármacos , Catharanthus/genética , Células Clonais , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Espaço Intracelular/efeitos dos fármacos , Moduladores de Transporte de Membrana/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rutênio Vermelho/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
14.
Methods Mol Biol ; 479: 79-92, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19083174

RESUMO

Calcium (Ca(2+)) ions act as intracellular second messengers in many different signalling processes in plant cells and thus contribute to the amplification step of the signalling pathway and the specificity of the adaptative response. Dynamics of calcium described as spatial and temporal changes of the Ca(2+) concentrations either in the cytosol and/or in other compartments of the plant cell are now accepted to generate "calcium signatures", which might be responsible for the initiation of specific downstream events leading to the mounting of an appropriate response. To identify and elucidate the properties of such signatures, highly sensitive and specific methods have been developed and are used to measure and monitor variations in intracellular Ca(2+) concentrations. Two of these methods, namely bio-luminescence and fluorescence in combination with confocal laser scanning microscopy, are presented.


Assuntos
Cálcio/metabolismo , Plantas/metabolismo , Arabidopsis/metabolismo , Espaço Intracelular/metabolismo , Microscopia Confocal , Células Vegetais , Fatores de Tempo , Nicotiana/metabolismo
15.
Plant Sci ; 280: 12-17, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30823989

RESUMO

It is now well established that sphingoid Long Chain Bases (LCBs) are crucial mediators of programmed cell death. In plants, the mycotoxin fumonisin B1 (FB1) produced by the necrotrophic fungus Fusarium moniliforme disrupts the sphingolipid biosynthesis pathway by inhibiting the ceramide synthase leading to an increase in the amount of phytosphingosine (PHS) and dihydrosphingosine (DHS), the two major LCBs in Arabidopsis thaliana. To date, the signaling pathway involved in FB1-induced cell death remains largely uncharacterized. It is also well acknowledged that plant proteases such as papain-like cysteine protease are largely involved in plant immunity. Here, we show that the papain-like cysteine protease RD21 (responsive-to-desiccation-21) is activated in response to PHS and FB1 in Arabidopsis cultured cells and leaves, respectively. Using two allelic null mutants of RD21, and two different PCD bioassays, we demonstrate that the protein acts as a negative regulator of FB1-induced cell death in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Morte Celular/fisiologia , Papaína/metabolismo , Esfingolipídeos/metabolismo , Proteínas de Arabidopsis/genética , Morte Celular/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
16.
Cell Calcium ; 43(1): 29-37, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17570488

RESUMO

Sphingolipids are known to interfere with calcium-based signalling pathways. Here we report that these compounds modulate nuclear calcium signalling in tobacco BY-2 cells. Nuclear protein kinase activity phosphorylated endogenous sphingoid long-chain bases (LCBs), suggesting that LCBs are actively metabolized in the nucleus of tobacco BY-2 cells. The Delta4-unsaturated LCB D-erythro-sphingosine and the saturated LCB D-ribo-phytosphingosine elicited increases in free calcium in the nucleus in a dose-dependent and structure-related manner. However, neither sphingosine-1-phosphate nor C2-ceramide was able to stimulate nuclear calcium changes. N-,N-Dimethyl-D-erythro-sphingosine, a structural analogue of D-erythro-sphingosine, was the most efficient LCB so far tested in eliciting nuclear calcium changes both in intact tobacco BY-2 cells and in isolated nuclei. TRP channel inhibitors prevent the effect of DMS, suggesting that LCBs may activate TRP-like channels located on the inner nuclear membrane Collectively, the obtained data show that nuclei respond to LCBs on their own independently of the cytosolic compartment.


Assuntos
Cálcio/metabolismo , Núcleo Celular/metabolismo , Nicotiana/metabolismo , Esfingolipídeos/metabolismo , Sinalização do Cálcio , Fracionamento Celular , Núcleo Celular/enzimologia , Células Cultivadas , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingolipídeos/química , Esfingolipídeos/farmacologia , Esfingosina/análogos & derivados , Esfingosina/química , Esfingosina/farmacologia , Nicotiana/citologia , Nicotiana/enzimologia , Canais de Potencial de Receptor Transitório/antagonistas & inibidores
17.
Biochim Biophys Acta ; 1763(11): 1209-15, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17052770

RESUMO

Increases in the concentration of free calcium in the cytosol are one of the general events that relay an external stimulus to the internal cellular machinery and allow eukaryotic organisms, including plants, to mount a specific biological response. Different lines of evidence have shown that other intracellular organelles contribute to the regulation of free calcium homeostasis in the cytosol. The vacuoles, the endoplasmic reticulum and the cell wall constitute storage compartments for mobilizable calcium. In contrast, the role of organelles surrounded by a double membrane (e.g. mitochondria, chloroplasts and nuclei) is more complex. Here, we review experimental data showing that these organelles harbor calcium-dependent biological processes. Mitochondria, chloroplasts as well as nuclei are equipped to generate calcium signal on their own. Changes in free calcium in a given organelle may also favor the relocalization of proteins and regulatory components and therefore have a profound influence on the integrated functioning of the cell. Studying, in time and space, the dynamics of different components of calcium signaling pathway will certainly give clues to understand the extraordinary flexibility of plants to respond to stimuli and mount adaptive responses. The availability of technical and biological resources should allow breaking new grounds by unveiling the contribution of signaling networks in integrative plant biology.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Membrana Celular/metabolismo , Organelas/metabolismo , Plantas/metabolismo , Citosol/metabolismo , Organelas/ultraestrutura , Plantas/ultraestrutura
18.
Trends Plant Sci ; 22(3): 263-272, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28065409

RESUMO

Calcium-dependent protein kinases (CDPKs) are Ca2+-sensors that play pivotal roles in plant development and stress responses. They have the unique ability to directly translate intracellular Ca2+ signals into reversible phosphorylation events of diverse substrates which can mediate interactions with 14-3-3 proteins to modulate protein functions. Recent studies have revealed roles for the coordinated action of CDPKs and 14-3-3s in regulating diverse aspects of plant biology including metabolism, development, and stress responses. We review here the underlying interaction and cross-regulation of the two signaling proteins, and we discuss how this insight has led to the emerging concept of CDPK/14-3-3 signaling modules that could contribute to response specificity.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas Quinases/metabolismo , Proteínas 14-3-3/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
19.
Cell Calcium ; 39(4): 293-303, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16473405

RESUMO

Experiments performed on nuclei isolated from animal or plant cells have provided evidence that the nucleus generates directly specific nucleoplasmic calcium transients in response to external stimuli. Recent data suggest that isolated plant nuclei might be considered as a closed system where the nuclear concentration of free calcium would be regulated by reversible movements between the nucleoplasm and nuclear stores. We have addressed the relevance of this hypothesis by developing a mathematical approach to simulate nucleoplasmic calcium dynamics generated under various pH and temperature conditions. Here, we show that the experimental results could be explained provided that calcium channels as well as systems transporting calcium are present on the inner nuclear membrane. The putative channels would allow the entry of calcium into the nucleoplasm whereas the elusive transporting system(s) would contribute to replenish the nuclear stores. The simple proposed model is versatile enough to explain and predict autonomous changes in free calcium in the nucleoplasm of isolated plant nuclei.


Assuntos
Cálcio/análise , Núcleo Celular/química , Modelos Teóricos , Nicotiana/química , Transporte Biológico , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular , Concentração de Íons de Hidrogênio , Membrana Nuclear/química , Estimulação Física/métodos , Temperatura , Fatores de Tempo
20.
FEBS Lett ; 580(27): 6329-37, 2006 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-17084390

RESUMO

The possible in vivo interaction of the Nicotiana tabacum agglutinin (Nictaba) with endogenous glycoproteins was corroborated using a combination of confocal/electron microscopy of an EGFP-Nictaba fusion protein expressed in tobacco Bright Yellow-2 (BY-2) cells and biochemical analyses. In vitro binding studies demonstrated that the expressed EGFP-Nictaba possesses carbohydrate-binding activity. Microscopic analyses confirmed the previously reported cytoplasmic/nuclear location of Nictaba in jasmonate-treated tobacco leaves and provided evidence for the involvement of a nuclear localization signal-dependent transport mechanism. In addition, it became evident that the lectin is not uniformly distributed over the nucleus and the cytoplasm of BY-2 cells. Far Western blot analysis of extracts from whole BY-2 cells and purified nuclei revealed that Nictaba interacts in a glycan inhibitable way with numerous proteins including many nuclear proteins. Enzymatic deglycosylation with PNGase F indicated that the observed interaction depends on the presence of N-glycans. Glycan array screening, which showed that Nictaba exhibits a strong affinity for high-mannose and complex N-glycans, provided a reasonable explanation for this observation. The cytoplasmic/nuclear localization of a plant lectin that has a high affinity for high-mannose and complex N-glycans and specifically interacts with conspecific glycoproteins suggests that N-glycosylated proteins might be more important in the cytoplasm and nucleus than is currently believed.


Assuntos
Núcleo Celular/metabolismo , Nicotiana/metabolismo , Proteínas Nucleares/metabolismo , Folhas de Planta/metabolismo , Lectinas de Plantas/metabolismo , Polissacarídeos/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Núcleo Celular/ultraestrutura , Manose/metabolismo , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Proteínas Nucleares/genética , Folhas de Planta/genética , Folhas de Planta/ultraestrutura , Lectinas de Plantas/genética , Ligação Proteica/fisiologia , Nicotiana/genética , Nicotiana/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA