Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cancer Sci ; 114(12): 4732-4746, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37792582

RESUMO

Oral squamous cell carcinoma of the gingivo-buccal region (OSCC-GB) is the most common cancer among men in India, and is associated with poor prognosis and frequent recurrence. Cellular heterogeneity in OSCC-GB was investigated by single-cell RNA sequencing of tumors derived from the oral cavity of 12 OSCC-GB patients, 3 of whom had concomitant presence of a precancerous lesion (oral submucous fibrosis [OSMF]). Unique malignant cell types, features, and phenotypic shifts in the stromal cell population were identified in oral tumors with associated submucous fibrosis. Expression levels of FOS, ATP1A, and DUSP1 provided robust discrimination between tumors with or without the concomitant presence of OSMF. Malignant cell populations shared between tumors with and without OSMF were enriched with the expression of partial epithelial-mesenchymal transition (pEMT) or fetal cell type signatures indicative of two dominant cellular programs in OSCC-GB-pEMT and fetal cellular reprogramming. Malignant cells exhibiting fetal cellular and pEMT programs were enriched with the expression of immune-related pathway genes known to be involved in antitumor immune response. In the tumor microenvironment, higher infiltration of immune cells than the stromal cells was observed. The T cell population was large in tumors and diverse subtypes of T cells with varying levels of infiltration were found. We also detected double-negative PLCG2+ T cells and cells with intermediate M1-M2 macrophage polarization. Our findings shed light on unique aspects of cellular heterogeneity and cell states in OSCC-GB.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Fibrose Oral Submucosa , Masculino , Humanos , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Fibrose Oral Submucosa/patologia , Perfilação da Expressão Gênica , Microambiente Tumoral/genética
2.
Cell Biol Toxicol ; 37(3): 333-366, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33067701

RESUMO

Mitochondria are double membrane-bound cellular work-horses constantly functioning to regulate vital aspects of cellular metabolism, bioenergetics, proliferation and death. Biogenesis, homeostasis and regulated turnover of mitochondria are stringently regulated to meet the bioenergetic requirements. Diverse external and internal stimuli including oxidative stress, diseases, xenobiotics and even age profoundly affect mitochondrial integrity. Damaged mitochondria need immediate segregation and selective culling to maintain physiological homeostasis. Mitophagy is a specialised form of macroautophagy that constantly checks mitochondrial quality followed by elimination of rogue mitochondria by lysosomal targeting through multiple pathways tightly regulated and activated in context-specific manners. Mitophagy is implicated in diverse oxidative stress-associated metabolic, proliferating and degenerative disorders owing to the centrality of mitopathology in diseases as well as the common mandate to eliminate damaged mitochondria for restoring physiological homeostasis. With improved health care and growing demand for precision medicine, specifically targeting the keystone factors in pathogenesis, more exploratory studies are focused on mitochondrial quality control as underlying guardian of cellular pathophysiology. In this context, mitophagy emerged as a promising area to focus biomedical research for identifying novel therapeutic targets against diseases linked with physiological redox perturbation. The present review provides a comprehensive account of the recent developments on mitophagy along with precise discussion on its impact on major diseases and possibilities of therapeutic modulation.


Assuntos
Metabolismo Energético/genética , Mitocôndrias/genética , Mitofagia/genética , Estresse Oxidativo/genética , Animais , Autofagia/genética , Homeostase/genética , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Controle de Qualidade , Estresse Fisiológico/genética
3.
J Biol Chem ; 294(20): 8238-8258, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30940726

RESUMO

The subcellular mechanism by which nonsteroidal anti-inflammatory drugs (NSAIDs) induce apoptosis in gastric cancer and normal mucosal cells is elusive because of the diverse cyclooxygenase-independent effects of these drugs. Using human gastric carcinoma cells (AGSs) and a rat gastric injury model, here we report that the NSAID indomethacin activates the protein kinase Cζ (PKCζ)-p38 MAPK (p38)-dynamin-related protein 1 (DRP1) pathway and thereby disrupts the physiological balance of mitochondrial dynamics by promoting mitochondrial hyper-fission and dysfunction leading to apoptosis. Notably, DRP1 knockdown or SB203580-induced p38 inhibition reduced indomethacin-induced damage to AGSs. Indomethacin impaired mitochondrial dynamics by promoting fissogenic activation and mitochondrial recruitment of DRP1 and down-regulating fusogenic optic atrophy 1 (OPA1) and mitofusins in rat gastric mucosa. Consistent with OPA1 maintaining cristae architecture, its down-regulation resulted in EM-detectable cristae deformity. Deregulated mitochondrial dynamics resulting in defective mitochondria were evident from enhanced Parkin expression and mitochondrial proteome ubiquitination. Indomethacin ultimately induced mitochondrial metabolic and bioenergetic crises in the rat stomach, indicated by compromised fatty acid oxidation, reduced complex I- associated electron transport chain activity, and ATP depletion. Interestingly, Mdivi-1, a fission-preventing mito-protective drug, reversed indomethacin-induced DRP1 phosphorylation on Ser-616, mitochondrial proteome ubiquitination, and mitochondrial metabolic crisis. Mdivi-1 also prevented indomethacin-induced mitochondrial macromolecular damage, caspase activation, mucosal inflammation, and gastric mucosal injury. Our results identify mitochondrial hyper-fission as a critical and common subcellular event triggered by indomethacin that promotes apoptosis in both gastric cancer and normal mucosal cells, thereby contributing to mucosal injury.


Assuntos
Apoptose/efeitos dos fármacos , GTP Fosfo-Hidrolases/metabolismo , Mucosa Gástrica/enzimologia , Indometacina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/enzimologia , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína Quinase C/metabolismo , Neoplasias Gástricas/enzimologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Apoptose/genética , Linhagem Celular Tumoral , Dinaminas , GTP Fosfo-Hidrolases/genética , Mucosa Gástrica/patologia , Humanos , Sistema de Sinalização das MAP Quinases/genética , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/genética , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/genética , Proteínas de Neoplasias/genética , Proteína Quinase C/genética , Ratos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética
4.
J Biol Chem ; 293(51): 19740-19760, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30366984

RESUMO

The indispensable role of macrophage migration inhibitory factor (MIF) in cancer cell proliferation is unambiguous, although which specific roles the cytokine plays to block apoptosis by preserving cell growth is still obscure. Using different cancer cell lines (AGS, HepG2, HCT116, and HeLa), here we report that the silencing of MIF severely deregulated mitochondrial structural dynamics by shifting the balance toward excess fission, besides inducing apoptosis with increasing sub-G0 cells. Furthermore, enhanced mitochondrial Bax translocation along with cytochrome c release, down-regulation of Bcl-xL, and Bcl-2 as well as up-regulation of Bad, Bax, and p53 indicated the activation of a mitochondrial pathway of apoptosis upon MIF silencing. The data also indicate a concerted down-regulation of Opa1 and Mfn1 along with a significant elevation of Drp1, cumulatively causing mitochondrial fragmentation upon MIF silencing. Up-regulation of Drp1 was found to be further coupled with fissogenic serine 616 phosphorylation and serine 637 dephosphorylation, thus ensuring enhanced mitochondrial translocation. Interestingly, MIF silencing was found to be associated with decreased NF-κB activation. In fact, NF-κB knockdown in turn increased mitochondrial fission and cell death. In addition, the silencing of CD74, the cognate receptor of MIF, remarkably increased mitochondrial fragmentation in addition to preventing cell proliferation, inducing mitochondrial depolarization, and increasing apoptotic cell death. This indicates the active operation of a MIF-regulated CD74-NF-κB signaling axis for maintaining mitochondrial stability and cell growth. Thus, we propose that MIF, through CD74, constitutively activates NF-κB to control mitochondrial dynamics and stability for promoting carcinogenesis via averting apoptosis.


Assuntos
Antígenos de Diferenciação de Linfócitos B/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Dinâmica Mitocondrial , NF-kappa B/metabolismo , Transdução de Sinais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Regulação para Baixo , Dinaminas , GTP Fosfo-Hidrolases/metabolismo , Inativação Gênica , Humanos , Fatores Inibidores da Migração de Macrófagos/deficiência , Fatores Inibidores da Migração de Macrófagos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mitocondriais/metabolismo , Transporte Proteico , Regulação para Cima
5.
Biochim Biophys Acta Proteins Proteom ; 1866(5-6): 722-730, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29654975

RESUMO

Retromer complex plays a crucial role in intracellular protein trafficking and is conserved throughout the eukaryotes including malaria parasite, Plasmodium falciparum, where it is partially conserved. The assembly of retromer complex in RBC stages of malarial parasite is extremely difficult to explore because of its complicated physiology, small size, and intra-erythrocytic location. Nonetheless, understanding of retromer assembly may pave new ways for the development of novel antimalarials targeting parasite-specific protein trafficking pathways. Here, we investigated the assembly of retromer complex in P. falciparum, by an immunosensing method through highly sensitive Surface Plasmon Resonance (SPR) technique. After taking leads from the bioinformatics search and literature, different interacting proteins were identified and specific antibodies were raised against them. The sensor chip was prepared by covalently linking antibody specific to one component and the whole cell lysate was passed through it in order to trap the interacting complex. Antibodies raised against other interacting components were used to detect them in the trapped complex on the SPR chip. We were able to detect three different components in the retromer complex trapped by the immobilized antibody specific against a different component on a sensor chip. The assay was reproduced and validated in a different two-component CD74-MIF system in mammalian cells. We, thus, illustrate the assembly of retromer complex in P. falciparum through a bio-sensing approach that combines SPR with immunosensing requiring a very small amount of sample from the native source.


Assuntos
Técnicas Biossensoriais , Complexos Multiproteicos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Ressonância de Plasmônio de Superfície , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Western Blotting , Biologia Computacional , Células Hep G2 , Humanos , Imunoprecipitação , Cinética , Camundongos , Complexos Multiproteicos/genética , Complexos Multiproteicos/imunologia , Células NIH 3T3 , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Ligação Proteica , Transporte Proteico , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/imunologia
6.
Antimicrob Agents Chemother ; 60(7): 4217-28, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27139466

RESUMO

We synthesized a new series of conjugated hydrazones that were found to be active against malaria parasite in vitro, as well as in vivo in a murine model. These hydrazones concentration-dependently chelated free iron and offered antimalarial activity. Upon screening of the synthesized hydrazones, compound 5f was found to be the most active iron chelator, as well as antiplasmodial. Compound 5f also interacted with free heme (KD [equilibrium dissociation constant] = 1.17 ± 0.8 µM), an iron-containing tetrapyrrole released after hemoglobin digestion by the parasite, and inhibited heme polymerization by parasite lysate. Structure-activity relationship studies indicated that a nitrogen- and sulfur-substituted five-membered aromatic ring present within the benzothiazole hydrazones might be responsible for their antimalarial activity. The dose-dependent antimalarial and heme polymerization inhibitory activities of the lead compound 5f were further validated by following [(3)H]hypoxanthine incorporation and hemozoin formation in parasite, respectively. It is worth mentioning that compound 5f exhibited antiplasmodial activity in vitro against a chloroquine/pyrimethamine-resistant strain of Plasmodium falciparum (K1). We also evaluated in vivo antimalarial activity of compound 5f in a murine model where a lethal multiple-drug-resistant strain of Plasmodium yoelii was used to infect Swiss albino mice. Compound 5f significantly suppressed the growth of parasite, and the infected mice experienced longer life spans upon treatment with this compound. During in vitro and in vivo toxicity assays, compound 5f showed minimal alteration in biochemical and hematological parameters compared to control. In conclusion, we identified a new class of hydrazone with therapeutic potential against malaria.


Assuntos
Antimaláricos/farmacologia , Benzotiazóis/farmacologia , Hidrazonas/farmacologia , Animais , Antimaláricos/síntese química , Antimaláricos/química , Benzotiazóis/síntese química , Benzotiazóis/química , Cloroquina/química , Cloroquina/farmacologia , Resistência a Múltiplos Medicamentos , Hidrazonas/síntese química , Hidrazonas/química , Ferro/química , Masculino , Camundongos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium yoelii/efeitos dos fármacos , Pirimetamina/química , Pirimetamina/farmacologia
7.
Protein Expr Purif ; 120: 7-15, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26690372

RESUMO

Translocation of various proteins to the subcellular organelles is an essential mechanism to regulate the metabolic pathways and often vacuolar protein sorting (VPS) proteins are involved in this transportation. Plasmodium falciparum VPS29 (PfVPS29) is predicted to be a functional component in the assembly of the retromer complex; however, so far detailed characterization of PfVPS29 in its native form is not yet done. We report the successful expression and purification of tag-free recombinant PfVPS29 with a yield of 5.6 mg from 1 L of Escherichia coli culture. PfVPS29 was purified by combined anion-exchange and size exclusion chromatography. The protein showed a single band in SDS-PAGE and it exhibited molecular mass of 21.7 kDa as measured by MALDI-TOF mass spectrometry. Secondary structure was elucidated by circular dichroism spectroscopy. It was found to be a monomeric protein in solution as evident from dynamic light scattering studies, chemical cross-linking experiments and size exclusion chromatography. Subsequently, polyclonal anti-PfVPS29 antibody was generated and used for evaluating protein expression by western blot and following subcellular localization in P. falciparum by confocal immunofluoroscence microscopy. PfVPS29 was found to be located in cytoplasm and expressed from early trophozoite to schizont stages with maximum expression in trophozoite stage. This study provides purification, biophysical characterization and subcellular localization of PfVPS29 in different asexual stages of P. falciparum.


Assuntos
Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Western Blotting , Dicroísmo Circular , Clonagem Molecular , Citoplasma/metabolismo , Eletroforese em Gel de Poliacrilamida , Expressão Gênica , Estágios do Ciclo de Vida , Espectrometria de Massas , Dados de Sequência Molecular , Peso Molecular , Plasmodium falciparum/fisiologia , Estrutura Secundária de Proteína , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/isolamento & purificação
8.
Infect Immun ; 82(8): 3113-26, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24818663

RESUMO

The liver efficiently restores function after damage induced during malarial infection once the parasites are cleared from the blood. However, the molecular events leading to the restoration of liver function after malaria are still obscure. To study this, we developed a suitable model wherein mice infected with Plasmodium yoelii (45% parasitemia) were treated with the antimalarial α/ß-arteether to clear parasites from the blood and, subsequently, restoration of liver function was monitored. Liver function tests clearly indicated that complete recovery of liver function occurred after 25 days of parasite clearance. Analyses of proinflammatory gene expression and neutrophil infiltration further indicated that hepatic inflammation, which was induced immediately after parasite clearance from the blood, was gradually reduced. Moreover, the inflammation in the liver after parasite clearance was found to be correlated positively with oxidative stress and hepatocyte apoptosis. We investigated the role of heme oxygenase 1 (HO-1) in the restoration of liver function after malaria because HO-1 normally renders protection against inflammation, oxidative stress, and apoptosis under various pathological conditions. The expression and activity of HO-1 were found to be increased significantly after parasite clearance. We even found that chemical silencing of HO-1 by use of zinc protoporphyrin enhanced inflammation, oxidative stress, hepatocyte apoptosis, and liver injury. In contrast, stimulation of HO-1 by cobalt protoporphyrin alleviated liver inflammation and reduced oxidative stress, hepatocyte apoptosis, and associated tissue injury. Therefore, we propose that selective induction of HO-1 in the liver would be beneficial for the restoration of liver function after parasite clearance.


Assuntos
Antimaláricos/uso terapêutico , Heme Oxigenase-1/metabolismo , Fígado/patologia , Malária/tratamento farmacológico , Malária/patologia , Plasmodium yoelii/crescimento & desenvolvimento , Animais , Testes de Função Hepática , Malária/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
9.
Biochem Pharmacol ; : 116283, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38750902

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) are most extensively used over-the-counter FDA-approved analgesic medicines for treating inflammation, musculoskeletal pain, arthritis, pyrexia and menstrual cramps. Moreover, aspirin is widely used against cardiovascular complications. Owing to their non-addictive nature, NSAIDs are also commissioned as safer opioid-sparing alternatives in acute trauma and post-surgical treatments. In fact, therapeutic spectrum of NSAIDs is expanding. These "wonder-drugs" are now repurposed against lung diseases, diabetes, neurodegenerative disorders, fungal infections and most notably cancer, due to their efficacy against chemoresistance, radio-resistance and cancer stem cells. However, prolonged NSAID treatment accompany several adverse effects. Mechanistically, apart from cyclooxygenase inhibition, NSAIDs directly target mitochondria to induce cell death. Interestingly, there are also incidences of dose-dependent effects where NSAIDs are found to improve mitochondrial health thereby suggesting plausible mitohormesis. While mitochondria-targeted effects of NSAIDs are discretely studied, a comprehensive account emphasizing the multiple dimensions in which NSAIDs affect mitochondrial structure-function integrity, leading to cell death, is lacking. This review discusses the current understanding of NSAID-mitochondria interactions in the pathophysiological background. This is essential for assessing the risk-benefit trade-offs of NSAIDs for judiciously strategizing NSAID-based approaches to manage pain and inflammation as well as formulating effective anti-cancer strategies. We also discuss recent developments constituting selective mitochondria-targeted NSAIDs including theranostics, mitocans, chimeric small molecules, prodrugs and nanomedicines that rationally optimize safer application of NSAIDs. Thus, we present a comprehensive understanding of therapeutic merits and demerits of NSAIDs with mitochondria at its cross roads. This would help in NSAID-based disease management research and drug development.

10.
iScience ; 27(4): 109467, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38558939

RESUMO

Alba domain proteins, owing to their functional plasticity, play a significant role in organisms. Here, we report an intrinsic DNase activity of PfAlba6 from Plasmodium falciparum, an etiological agent responsible for human malignant malaria. We identified that tyrosine28 plays a critical role in the Mg2+ driven 5'-3' DNase activity of PfAlba6. PfAlba6 cleaves both dsDNA as well as ssDNA. We also characterized PfAlba6-DNA interaction and observed concentration-dependent oligomerization in the presence of DNA, which is evident from size exclusion chromatography and single molecule AFM-imaging. PfAlba6 mRNA expression level is up-regulated several folds following heat stress and treatment with artemisinin, indicating a possible role in stress response. PfAlba6 has no human orthologs and is expressed in all intra-erythrocytic stages; thus, this protein can potentially be a new anti-malarial drug target.

11.
FEBS J ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39003571

RESUMO

Non-canonical nucleotides, generated as oxidative metabolic by-products, significantly threaten the genome integrity of Plasmodium falciparum and thereby, their survival, owing to their mutagenic effects. PfHAM1, an evolutionarily conserved inosine/xanthosine triphosphate pyrophosphohydrolase, maintains nucleotide homeostasis in the malaria parasite by removing non-canonical nucleotides, although structure-function intricacies are hitherto poorly reported. Here, we report the X-ray crystal structure of PfHAM1, which revealed a homodimeric structure, additionally validated by size-exclusion chromatography-multi-angle light scattering analysis. The two monomeric units in the dimer were aligned in a parallel fashion, and critical residues associated with substrate and metal binding were identified, wherein a notable structural difference was observed in the ß-sheet main frame compared to human inosine triphosphate pyrophosphatase. PfHAM1 exhibited Mg++-dependent pyrophosphohydrolase activity and the highest binding affinity to dITP compared to other non-canonical nucleotides as measured by isothermal titration calorimetry. Modifying the pfham1 genomic locus followed by live-cell imaging of expressed mNeonGreen-tagged PfHAM1 demonstrated its ubiquitous presence in the cytoplasm across erythrocytic stages with greater expression in trophozoites and schizonts. Interestingly, CRISPR-Cas9/DiCre recombinase-guided pfham1-null P. falciparum survived in culture under standard growth conditions, indicating its assistive role in non-canonical nucleotide clearance during intra-erythrocytic stages. This is the first comprehensive structural and functional report of PfHAM1, an atypical nucleotide-cleansing enzyme in P. falciparum.

12.
iScience ; 27(4): 109384, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38550981

RESUMO

Gastric cancer (GC) is a deadly malignancy that demands effective therapeutic intervention capitalizing unique drug target/s. Here, we report that indomethacin, a cyclooxygenase non-selective non-steroidal anti-inflammatory drug, arrests GC cell growth by targeting mitochondrial deacetylase Sirtuin 3 (SIRT3). Interaction study revealed that indomethacin competitively inhibited SIRT3 by binding to nicotinamide adenine dinucleotide (NAD)-binding site. The Cancer Genome Atlas data meta-analysis indicated poor prognosis associated with high SIRT3 expression in GC. Further, transcriptome sequencing data of human gastric adenocarcinoma cells revealed that indomethacin treatment severely downregulated SIRT3. Indomethacin-induced SIRT3 downregulation augmented SOD2 and OGG1 acetylation, leading to mitochondrial redox dyshomeostasis, mtDNA damage, respiratory chain failure, bioenergetic crisis, mitochondrial fragmentation, and apoptosis via blocking the AMPK/PGC1α/SIRT3 axis. Indomethacin also downregulated SIRT3 regulators ERRα and PGC1α. Further, SIRT3 knockdown aggravated indomethacin-induced mitochondrial dysfunction as well as blocked cell-cycle progression to increase cell death. Thus, we reveal how indomethacin induces GC cell death by disrupting SIRT3 signaling.

13.
Cell Rep ; 42(4): 112292, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36947546

RESUMO

Plasmodium falciparum Alba domain-containing protein Alba3 (PfAlba3) is ubiquitously expressed in intra-erythrocytic stages of Plasmodium falciparum, but the function of this protein is not yet established. Here, we report an apurinic/apyrimidinic site-driven intrinsic nuclease activity of PfAlba3 assisted by divalent metal ions. Surface plasmon resonance and atomic force microscopy confirm sequence non-specific DNA binding by PfAlba3. Upon binding, PfAlba3 cleaves double-stranded DNA (dsDNA) hydrolytically. Mutational studies coupled with mass spectrometric analysis indicate that K23 is the essential residue in modulating the binding to DNA through acetylation-deacetylation. We further demonstrate that PfSir2a interacts and deacetylates K23-acetylated PfAlba3 in favoring DNA binding. Hence, K23 serves as a putative molecular switch regulating the nuclease activity of PfAlba3. Thus, the nuclease activity of PfAlba3, along with its apurinic/apyrimidinic (AP) endonuclease feature identified in this study, indicates a role of PfAlba3 in DNA-damage response that may have a far-reaching consequence in Plasmodium pathogenicity.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Plasmodium falciparum , Plasmodium falciparum/genética , Ligação Proteica , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA/metabolismo , Reparo do DNA
14.
Br J Pharmacol ; 180(18): 2317-2340, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36914615

RESUMO

BACKGROUND AND PURPOSE: Mitochondrial oxidative stress, inflammation and apoptosis primarily underlie gastric mucosal injury caused by the widely used non-steroidal anti-inflammatory drugs (NSAIDs). Alternative gastroprotective strategies are therefore needed. Sirtuin-3 pivotally maintains mitochondrial structural integrity and metabolism while preventing oxidative stress; however, its relevance to gastric injury was never explored. Here, we have investigated whether and how sirtuin-3 stimulation by the phytochemical, honokiol, could rescue NSAID-induced gastric injury. EXPERIMENTAL APPROACH: Gastric injury in rats induced by indomethacin was used to assess the effects of honokiol. Next-generation sequencing-based transcriptomics followed by functional validation identified the gastroprotective function of sirtuin-3. Flow cytometry, immunoblotting, qRT-PCR and immunohistochemistry were used measure effects on oxidative stress, mitochondrial dynamics, electron transport chain function, and markers of inflammation and apoptosis. Sirtuin-3 deacetylase activity was also estimated and gastric luminal pH was measured. KEY RESULTS: Indomethacin down-regulated sirtuin-3 to induce oxidative stress, mitochondrial hyperacetylation, 8-oxoguanine DNA glycosylase 1 depletion, mitochondrial DNA damage, respiratory chain defect and mitochondrial fragmentation leading to severe mucosal injury. Indomethacin dose-dependently inhibited sirtuin-3 deacetylase activity. Honokiol prevented mitochondrial oxidative damage and inflammatory tissue injury by attenuating indomethacin-induced depletion of both sirtuin-3 and its transcriptional regulators PGC1α and ERRα. Honokiol also accelerated gastric wound healing but did not alter gastric acid secretion, unlike lansoprazole. CONCLUSIONS AND IMPLICATIONS: Sirtuin-3 stimulation by honokiol prevented and reversed NSAID-induced gastric injury through maintaining mitochondrial integrity. Honokiol did not affect gastric acid secretion. Sirtuin-3 stimulation by honokiol may be utilized as a mitochondria-based, acid-independent novel gastroprotective strategy against NSAIDs.


Assuntos
Sirtuína 3 , Ratos , Animais , Sirtuína 3/metabolismo , Ratos Sprague-Dawley , Anti-Inflamatórios não Esteroides/farmacologia , Indometacina/toxicidade , Mucosa Gástrica/metabolismo , Apoptose , Inflamação/metabolismo
15.
Life Sci ; 305: 120753, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35787999

RESUMO

Gastroduodenal inflammation and ulcerative injuries are increasing due to expanding socio-economic stress, unhealthy food habits-lifestyle, smoking, alcoholism and usage of medicines like non-steroidal anti-inflammatory drugs. In fact, gastrointestinal (GI) complications, associated with the prevailing COVID-19 pandemic, further, poses a challenge to global healthcare towards safeguarding the GI tract. Emerging evidences have discretely identified mitochondrial dysfunctions as common etiological denominators in diseases. However, it is worth realizing that mitochondrial dysfunctions are not just consequences of diseases. Rather, damaged mitochondria severely aggravate the pathogenesis thereby qualifying as perpetrable factors worth of prophylactic and therapeutic targeting. Oxidative and nitrosative stress due to endogenous and exogenous stimuli triggers mitochondrial injury causing production of mitochondrial damage associated molecular patterns (mtDAMPs), which, in a feed-forward loop, inflicts inflammatory tissue damage. Mitochondrial structural dynamics and mitophagy are crucial quality control parameters determining the extent of mitopathology and disease outcomes. Interestingly, apart from endogenous factors, mitochondria also crosstalk and in turn get detrimentally affected by gut pathobionts colonized during luminal dysbiosis. Although mitopathology is documented in various pre-clinical/clinical studies, a comprehensive account appreciating the mitochondrial basis of GI mucosal pathogenesis is largely lacking. Here we critically discuss the molecular events impinging on mitochondria along with the interplay of mitochondria-derived factors in fueling mucosal damage. We specifically emphasize on the potential role of aberrant mitochondrial dynamics, anomalous mitophagy, mitochondrial lipoxidation and ferroptosis as emerging regulators of GI mucosal pathogenesis. We finally discuss about the prospect of mitochondrial targeting for next-generation drug discovery against GI disorders.


Assuntos
COVID-19 , Mitofagia , Alarminas , Humanos , Mitocôndrias/patologia , Dinâmica Mitocondrial , Pandemias
16.
Life Sci ; 258: 118201, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32781070

RESUMO

Fibrotic lung diseases qualify among the most dreaded irreversible interstitial pulmonary complications with progressive yet largely unpredictable clinical course. Idiopathic pulmonary fibrosis (IPF) is the most challenging prototype characterized by unknown and complex molecular etiology, severe dearth of non-invasive therapeutic options and average lifespan of 2-5 years in patients post diagnosis. Lung fibrosis (LF) is a leading cause of death in the industrialized world with the propensity to contract, significantly increasing with age. Approximately 45% deaths in US are attributed to fibrotic diseases while around 7% respiratory disease-associated deaths, annually in UK, are actually attributed to IPF. Recent developments in the field of LF have unambiguously pointed towards the pivotal role of Sirtuins (SIRTs) in regulating disease progression, thereby qualifying as potential anti-fibrotic drug targets. These NAD+-dependent lysine deacetylases, deacylases and ADP-ribosyltransferases are evolutionarily conserved proteins, regulated by diverse metabolic/environmental factors and implicated in age-related degenerative and inflammatory disorders. While SIRT1, SIRT6 and SIRT7 are predominantly nuclear, SIRT3, SIRT4, SIRT5 are mainly mitochondrial and SIRT2 is majorly cytosolic with occasional nuclear translocation. SIRT1, SIRT3, SIRT6 and SIRT7 are documented as cytoprotective sirtuins implicated in cardiovascular, pulmonary and metabolic diseases including fibrosis; however functional roles of remaining sirtuins in pulmonary pathologies are yet elusive. Here, we provide a comprehensive recent update on the regulatory role of sirtuins on LF along with discussion on potential therapeutic modulation of endogenous Sirtuin expression through synthetic/plant-derived compounds which can help synthetic chemists and ethnopharmacologists to design new-generation cheap, non-toxic Sirtuin-based drugs against LF.


Assuntos
Pulmão/metabolismo , Pulmão/patologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Sirtuínas/metabolismo , Animais , Humanos , Mitocôndrias/metabolismo , Terapia de Alvo Molecular , Transdução de Sinais
17.
Biochem Pharmacol ; 180: 114147, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32653589

RESUMO

Owing to the efficacy in reducing pain and inflammation, non-steroidal anti-inflammatory drugs (NSAIDs) are amongst the most popularly used medicines confirming their position in the WHO's Model List of Essential Medicines. With escalating musculoskeletal complications, as evident from 2016 Global Burden of Disease data, NSAID usage is evidently unavoidable. Apart from analgesic, anti-inflammatory and antipyretic efficacies, NSAIDs are further documented to offer protection against diverse critical disorders including cancer and heart attacks. However, data from multiple placebo-controlled trials and meta-analyses studies alarmingly signify the adverse effects of NSAIDs in gastrointestinal, cardiovascular, hepatic, renal, cerebral and pulmonary complications. Although extensive research has elucidated the mechanisms underlying the clinical hazards of NSAIDs, no review has extensively collated the outcomes on various multiorgan toxicities of these drugs together. In this regard, the present review provides a comprehensive insight of the existing knowledge and recent developments on NSAID-induced organ damage. It precisely encompasses the current understanding of structure, classification and mode of action of NSAIDs while reiterating on the emerging instances of NSAID drug repurposing along with pharmacophore modification aimed at safer usage of NSAIDs where toxic effects are tamed without compromising the clinical benefits. The review does not intend to vilify these 'wonder drugs'; rather provides a careful understanding of their side-effects which would be beneficial in evaluating the risk-benefit threshold while rationally using NSAIDs at safer dose and duration.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios não Esteroides/farmacologia , Insuficiência de Múltiplos Órgãos/induzido quimicamente , Animais , Anti-Inflamatórios não Esteroides/classificação , Inibidores de Ciclo-Oxigenase 2/efeitos adversos , Inibidores de Ciclo-Oxigenase 2/classificação , Inibidores de Ciclo-Oxigenase 2/farmacologia , Humanos , Insuficiência de Múltiplos Órgãos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
18.
Biochim Biophys Acta Gen Subj ; 1864(10): 129656, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32512169

RESUMO

BACKGROUND: Intracellular protein trafficking is crucial for survival of cell and proper functioning of the organelles; however, these pathways are not well studied in the malaria parasite. Its unique cellular architecture and organellar composition raise an interesting question to investigate. METHODS: The interaction of Plasmodium falciparum Rab7 (PfRab7) with vacuolar protein sorting-associated protein 26 (PfVPS26) of retromer complex was shown by coimmunoprecipitation (co-IP). Confocal microscopy was used to show the localization of the complex in the parasite with respect to different organelles. Further chemical tools were employed to explore the role of digestive vacuole (DV) in retromer trafficking in parasite and GTPase activity of PfRab7 was examined. RESULTS: PfRab7 was found to be interacting with retromer complex that assembled mostly near DV and the Golgi in trophozoites. Chemical disruption of DV by chloroquine (CQ) led to its disassembly that was further validated by using compound 5f, a heme polymerization inhibitor in the DV. PfRab7 exhibited Mg2+ dependent weak GTPase activity that was inhibited by a specific Rab7 GTPase inhibitor, CID 1067700, which prevented the assembly of retromer complex in P. falciparum and inhibited its growth suggesting the role of GTPase activity of PfRab7 in retromer assembly. CONCLUSION: Retromer complex was found to be interacting with PfRab7 and the functional integrity of the DV was found to be important for retromer assembly in P. falciparum. GENERAL SIGNIFICANCE: This study explores the retromer trafficking in P. falciparum and describes amechanism to validate DV targeting antiplasmodial molecules.


Assuntos
Plasmodium falciparum/metabolismo , Vacúolos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Antimaláricos/farmacologia , Cloroquina/farmacologia , Humanos , Magnésio/metabolismo , Malária Falciparum/tratamento farmacológico , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Modelos Moleculares , Plasmodium falciparum/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Vacúolos/efeitos dos fármacos , proteínas de unión al GTP Rab7
19.
ACS Infect Dis ; 5(1): 63-73, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30472841

RESUMO

The rapid emergence of resistance against frontline antimalarial drugs essentially warrants the identification of new-generation antimalarials. Here, we describe the synthesis of ( E)-2-isopropyl-5-methyl-4-((2-(pyridin-4-yl)hydrazono)methyl)phenol (18), which binds ferriprotoporphyrin-IX (FeIII-PPIX) ( Kd = 33 nM) and offers antimalarial activity against chloroquine-resistant and sensitive strains of Plasmodium falciparum in vitro. Structure-function analysis reveals that compound 18 binds FeIII-PPIX through the -C═N-NH- moiety and 2-pyridyl substitution at the hydrazine counterpart plays a critical role in antimalarial efficacy. Live cell confocal imaging using a fluorophore-tagged compound confirms its accumulation inside the acidic food vacuole (FV) of P. falciparum. Furthermore, this compound concentration-dependently elevates the pH in FV, implicating a plausible interference with FeIII-PPIX crystallization (hemozoin formation) by a dual function: increasing the pH and binding free FeIII-PPIX. Different off-target bioassays reduce the possibility of the promiscuous nature of compound 18. Compound 18 also exhibits potent in vivo antimalarial activity against chloroquine-resistant P. yoelii and P. berghei ANKA (causing cerebral malaria) in mice with negligible toxicity.


Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacologia , Hemina/metabolismo , Hidrazonas/farmacologia , Malária Falciparum/prevenção & controle , Fenóis/química , Fenóis/farmacologia , Vacúolos/efeitos dos fármacos , Animais , Bioensaio , Resistência a Medicamentos , Hemeproteínas/antagonistas & inibidores , Hemeproteínas/biossíntese , Hidrazonas/síntese química , Concentração de Íons de Hidrogênio , Camundongos , Microscopia Confocal , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium yoelii/efeitos dos fármacos , Ligação Proteica , Vacúolos/química
20.
Free Radic Biol Med ; 113: 424-438, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28993273

RESUMO

Psychological stress, depression and anxiety lead to multiple organ dysfunctions wherein stress-related mucosal disease (SRMD) is common to people experiencing stress and also occur as a side effect in patients admitted to intensive care units; however the underlying molecular aetiology is still obscure. We report that in rat-SRMD model, cold restraint-stress severely damaged gut mitochondrial functions to generate superoxide anion (O2•-), depleted ATP and shifted mitochondrial fission-fusion dynamics towards enhanced fission to induce mucosal injury. Activation of mitophagy to clear damaged and fragmented mitochondria was evident from mitochondrial translocation of Parkin and PINK1 along with enhanced mitochondrial proteome ubiquitination, depletion of mitochondrial DNA copy number and TOM 20. However, excess and sustained accumulation of O2•--generating defective mitochondria overpowered the mitophagic machinery, ultimately triggering Bax-dependent apoptosis and NF-κB-intervened pro-inflammatory mucosal injury. We further observed that stress-induced enhanced serum corticosterone stimulated mitochondrial recruitment of glucocorticoid receptor (GR), which contributed to gut mitochondrial dysfunctions as documented from reduced ETC complex 1 activity, mitochondrial O2•- accumulation, depolarization and hyper-fission. GR-antagonism by RU486 or specific scavenging of mitochondrial O2•- by a mitochondrially targeted antioxidant mitoTEMPO ameliorated stress-induced mucosal damage. Gut mitopathology and mucosal injury were also averted when the perception of mental stress was blocked by pre-treatment with a sedative or antipsychotic. Altogether, we suggest the role of mitochondrial GR-O2•--fission cohort in brain-mitochondria cross-talk during acute mental stress and advocate the utilization of this pathway as a potential target to prevent mitochondrial unrest and gastropathy bypassing central nervous system.


Assuntos
Trifosfato de Adenosina/metabolismo , Mucosa Gástrica/metabolismo , Imobilização/psicologia , Mitocôndrias/metabolismo , Estresse Psicológico/metabolismo , Animais , Antipsicóticos/farmacologia , Temperatura Baixa , Corticosterona/sangue , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Regulação da Expressão Gênica , Imobilização/métodos , Inflamação , Proteínas de Membrana Transportadoras , Mifepristona/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Dinâmica Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitofagia/efeitos dos fármacos , Mitofagia/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Compostos Organofosforados/farmacologia , Estresse Oxidativo , Piperidinas/farmacologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ratos Sprague-Dawley , Receptores de Superfície Celular , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Estômago , Estresse Psicológico/genética , Estresse Psicológico/patologia , Superóxidos/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA