Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Small ; 20(13): e2309251, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37948352

RESUMO

Conversion of CO2 into value-added products by electrocatalysis provides a promising way to mitigate energy and environmental problems. However, it is greatly limited by the scaling relationship between the adsorption strength of intermediates. Herein, Mn and Ni single-atom catalysts, homonuclear dual-atom catalysts (DACs), and heteronuclear DACs are synthesized. Aberration-corrected annular dark-field scanning transmission electron microscopy (ADF-STEM) and X-ray absorption spectroscopy characterization uncovered the existence of the Mn─Ni pair in Mn─Ni DAC. X-ray photoelectron spectroscopy and X-ray absorption near-edge spectroscopy reveal that Mn donated electrons to Ni atoms in Mn─Ni DAC. Consequently, Mn─Ni DAC displays the highest CO Faradaic efficiency of 98.7% at -0.7 V versus reversible hydrogen electrode (vs RHE) with CO partial current density of 16.8 mA cm-2. Density functional theory calculations disclose that the scaling relationship between the binding strength of intermediates is broken, resulting in superior performance for ECR to CO over Mn─Ni─NC catalyst.

2.
Sensors (Basel) ; 24(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732878

RESUMO

The article reviews issues associated with the operation of stationary and non-stationary electronic fire alarm systems (FASs). These systems are employed for the fire protection of selected buildings (stationary) or to monitor vast areas, e.g., forests, airports, logistics hubs, etc. (non-stationary). An FAS is operated under various environmental conditions, indoor and outdoor, favourable or unfavourable to the operation process. Therefore, an FAS has to exhibit a reliable structure in terms of power supply and operation. To this end, the paper discusses a representative FAS monitoring a facility and presents basic tactical and technical assumptions for a non-stationary system. The authors reviewed fire detection methods in terms of fire characteristic values (FCVs) impacting detector sensors. Another part of the article focuses on false alarm causes. Assumptions behind the use of unmanned aerial vehicles (UAVs) with visible-range cameras (e.g., Aviotec) and thermal imaging were presented for non-stationary FASs. The FAS operation process model was defined and a computer simulation related to its operation was conducted. Analysing the FAS operation process in the form of models and graphs, and the conducted computer simulation enabled conclusions to be drawn. They may be applied for the design, ongoing maintenance and operation of an FAS. As part of the paper, the authors conducted a reliability analysis of a selected FAS based on the original performance tests of an actual system in operation. They formulated basic technical and tactical requirements applicable to stationary and mobile FASs detecting the so-called vast fires.

3.
J Am Chem Soc ; 145(16): 9081-9091, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37040083

RESUMO

Zeolites are key materials in both basic research and industrial applications. However, their synthesis is neither diverse nor applicable to labile frameworks because classical procedures require harsh hydrothermal conditions, whereas post-synthesis methods are limited to a few suitable parent materials. Remaining frameworks can fail due to amorphization, dissolution, and other decomposition processes. Nevertheless, stopping degradation at intermediate structures could yield new zeolites. Here, by optimizing the design and synthesis parameters of the parent zeolite IWV, we "caught" a new, highly crystalline, and siliceous zeolite during its degradation. IWV seed-assisted crystallization followed by gentle transformation into the water-alcohol system yielded the highly crystalline daughter zeolite IPC-20, whose structure was solved by precession-assisted three-dimensional electron diffraction. Without additional requirements, as in conventional (direct or post-synthesis) strategies, our approach may be applied to any chemically labile material with a staged structure.

4.
Appl Opt ; 62(7): B156-B163, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37132901

RESUMO

In this paper, the dispersion of a complex refractive index is investigated and proposed as a way to analyze the change of the optical properties of gasochromic material under the influence of diluted hydrogen (3.5% H 2 in Ar) as an active volatile medium. Therefore, a tungsten trioxide thin film and an additional platinum catalyst were deposited by electron beam evaporation and used as a prototype material. Based on experimental verification, it is shown that the proposed method allows one to explain the reasons for the observed changes in the transparency in such materials.

5.
Sensors (Basel) ; 23(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37112164

RESUMO

Hydrogen is an efficient source of clean and environmentally friendly energy. However, because it is explosive at concentrations higher than 4%, safety issues are a great concern. As its applications are extended, the need for the production of reliable monitoring systems is urgent. In this work, mixed copper-titanium oxide ((CuTi)Ox) thin films with various copper concentrations (0-100 at.%), deposited by magnetron sputtering and annealed at 473 K, were investigated as a prospective hydrogen gas sensing material. Scanning electron microscopy was applied to determine the morphology of the thin films. Their structure and chemical composition were investigated by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The prepared films were nanocrystalline mixtures of metallic copper, cuprous oxide, and titanium anatase in the bulk, whereas at the surface only cupric oxide was found. In comparison to the literature, the (CuTi)Ox thin films already showed a sensor response to hydrogen at a relatively low operating temperature of 473 K without using any extra catalyst. The best sensor response and sensitivity to hydrogen gas were found in the mixed copper-titanium oxides containing similar atomic concentrations of both metals, i.e., 41/59 and 56/44 of Cu/Ti. Most probably, this effect is related to their similar morphology and to the simultaneous presence of Cu and Cu2O crystals in these mixed oxide films. In particular, the studies of surface oxidation state revealed that it was the same for all annealed films and consisted only of CuO. However, in view of their crystalline structure, they consisted of Cu and Cu2O nanocrystals in the thin film volume.

6.
Angew Chem Int Ed Engl ; 62(1): e202213361, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36342499

RESUMO

Supported metal nanoparticles are used as heterogeneous catalysts but often deactivated due to sintering at high temperatures. Confining metal species into a porous matrix reduces sintering, yet supports rarely provide additional stabilization. Here, we used the silanol-rich layered zeolite IPC-1P to stabilize ultra-small Rh nanoparticles. By adjusting the IPC-1P interlayer space through swelling, we prepared various architectures, including microporous and disordered mesoporous. In situ scanning transmission electron microscopy confirmed that Rh nanoparticles are resistant to sintering at high temperature (750 °C, 6 hrs). Rh clusters strongly bind to surface silanol quadruplets at IPC-1P layers by hydrogen transfer to clusters, while high silanol density hinders their migration based on density functional theory calculations. Ultimately, combining swelling with long-chain surfactant and utilizing metal-silanol interactions resulted in a novel, catalytically active material-Rh@IPC_C22.

7.
Appl Opt ; 61(34): 10283-10289, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36606794

RESUMO

In this work, the optical and structural properties of gradient (Ti,Co)Ox coatings with a resistive switching effect have been outlined. They were prepared using multi-magnetron sputtering and, despite the high cobalt content, they were transparent and had a high refractive index. The gradient Co-addition resulted in the receiving of fine crystalline T i O 2-anatase and C o 3 O 4 forms in the amorphous surrounding. Observed resistance switching was a fully repeatable effect, and its occurrence in gradient (Ti,Co)Ox coatings has not reported earlier. The prepared gradient coatings exhibit great potential as transparent electronic devices with the resistance switching effect. Such memory effects in transparent thin-film coatings open new possibilities for the manufacturing of innovative memory elements in the future.

8.
Sensors (Basel) ; 22(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35890779

RESUMO

This paper concerns the problem of vibration reduction during milling. For this purpose, it is proposed that the standard supports of the workpiece be replaced with adjustable stiffness supports. This affects the modal parameters of the whole system, i.e., object and its supports, which is essential from the point of view of the relative tool-workpiece vibrations. To reduce the vibration level during milling, it is necessary to appropriately set the support stiffness coefficients, which are obtained from numerous milling process simulations. The simulations utilize the model of the workpiece with adjustable supports in the convention of a Finite Element Model (FEM) and a dynamic model of the milling process. The FEM parameters are tuned based on modal tests of the actual workpiece. For assessing simulation results, the proper indicator of vibration level must be selected, which is also discussed in the paper. However, simulating the milling process is time consuming and the total number of simulations needed to search the entire available range of support stiffness coefficients is large. To overcome this issue, the artificial intelligence salp swarm algorithm is used. Finally, for the best combination of stiffness coefficients, the vibration reduction is obtained and a significant reduction in search time for determining the support settings makes the approach proposed in the paper attractive from the point of view of practical applications.

9.
J Am Chem Soc ; 143(29): 11052-11062, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34264655

RESUMO

Direct exfoliation of layered zeolites into solutions of monolayers has remained unresolved since the 1990s. Recently, zeolite MCM-56 with the MWW topology (layers denoted mww) has been exfoliated directly in high yield by soft-chemical treatment with tetrabutylammonium hydroxide (TBAOH). This has enabled preparation of zeolite-based hierarchical materials and intimate composites with other active species that are unimaginable via the conventional solid-state routes. The extension to other frameworks, which provides broader benefits, diversified activity, and functionality, is not routine and requires finding suitable synthesis formulations, viz. compositions and conditions, of the layered zeolites themselves. This article reports exfoliation and characterization of layers with ferrierite-related structure, denoted bifer, having rectangular lattice constants like those of the FER and CDO zeolites, and thickness of approximately 2 nm, which is twice that of the so-called fer layer. Several techniques were combined to prove the exfoliation, supported by simulations: AFM; in-plane, in situ, and powder X-ray diffraction; TEM; and SAED. The results confirmed (i) the structure and crystallinity of the layers without unequivocal differentiation between the FER and CDO topologies and (ii) uniform thickness in solution (monodispersity), ruling out significant multilayered particles and other impurities. The bifer layers are zeolitic with Brønsted acid sites, demonstrated catalytic activity in the alkylation of mesitylene with benzyl alcohol, and intralayer pores visible in TEM. The practical benefits are demonstrated by the preparation of unprecedented intimately mixed zeolite composites with the mww, with activity greater than the sum of the components despite high content of inert silica as pillars.

10.
Chemistry ; 27(33): 8537-8546, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33783895

RESUMO

The size of single crystals of the metal-organic framework CPO-27-Ni was incrementally increased through a series of modulated syntheses. A novel linker modulated synthesis using 2,5-dihydroxyterephthalic acid and the isomeric ligand 4,6-dihydroxyisophthalic acid yielded large single crystals of CPO-27-Ni (∼70 µm). All materials were shown to have high crystallinity and phase purity through powder X-ray diffraction, electron microscopy methods, thermogravimetry, and compositional analysis. For the first time single-crystal structure analyses were carried out on CPO-27-Ni. High BET surface areas and nitric oxide (NO) release efficiencies were recorded for all materials. Large single crystals of CPO-27-Ni showed a prolonged NO release and proved suitable for in situ single-crystal diffraction experiments to follow the NO adsorption. An efficient activation protocol was developed, leading to a dehydrated structure after just 4 h, which subsequently was NO-loaded, leading to a first NO loaded single-crystal structural model of CPO-27-Ni.

11.
J Am Chem Soc ; 141(10): 4453-4459, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30786710

RESUMO

The hydrolysis (disassembly, D) and rearrangement (organization, O) steps of the assembly-disassembly-organization-reassembly (ADOR) process for the synthesis of zeolites have been studied. Germanium-rich UTL was subjected to hydrolysis conditions in water to understand the effects of temperature (100, 92, 85, 81, 77, and 70 °C). Samples were taken periodically over an 8-37 h period, and each sample was analyzed by powder X-ray diffraction. The results show that the hydrolysis step is solely dependent on the presence of liquid water, whereas the rearrangement is dependent on the temperature of the system. The kinetics have been investigated using the Avrami-Erofeev model. With increasing temperature, an increase in the rate of reaction for the rearrangement step was observed, and the Arrhenius equation was used to ascertain an apparent activation energy for the rearrangement from the kinetic product of the disassembly (IPC-1P) to the thermodynamic product of the rearrangement (IPC-2P). From this information, a mechanism for this transformation can be postulated.

12.
Chem Soc Rev ; 44(20): 7177-206, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25946705

RESUMO

A novel methodology, called ADOR (assembly-disassembly-organisation-reassembly), for the synthesis of zeolites is reviewed here in detail. The ADOR mechanism stems from the fact that certain chemical weakness against a stimulus may be present in a zeolite framework, which can then be utilized for the preparation of new solids through successive manipulation of the material. In this review, we discuss the critical factors of germanosilicate zeolites required for application of the ADOR protocol and describe the mechanism of hydrolysis, organisation and condensation to form new zeolites starting from zeolite UTL. Last but not least, we discuss the potential of this methodology to form other zeolites and the prospects for future investigations.

13.
Beilstein J Org Chem ; 11: 2087-96, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26664629

RESUMO

Hoveyda-Grubbs type catalysts with cationic tags on NHC ligands were linker-free immobilized on the surface of lamellar zeolitic supports (MCM-22, MCM-56, MCM-36) and on mesoporous molecular sieves SBA-15. The activity of prepared hybrid catalysts was tested in olefin metathesis reactions: the activity in ring-closing metathesis of citronellene and N,N-diallyltrifluoroacetamide decreased in the order of support MCM-22 ≈ MCM-56 > SBA-15 > MCM-36; the hybrid catalyst based on SBA-15 was found the most active in self-metathesis of methyl oleate. All catalysts were reusable and exhibited low Ru leaching (<1% of Ru content). XPS analysis revealed that during immobilization ion exchange between Hoveyda-Grubbs type catalyst and zeolitic support occurred in the case of Cl(-) counter anion; in contrast, PF6 (-) counter anion underwent partial decomposition.

14.
J Am Chem Soc ; 136(6): 2511-9, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24451039

RESUMO

Novel layered zeolitic organic-inorganic materials have been synthesized using a two-dimensional zeolite precursor IPC-1P prepared by a top-down approach from zeolite UTL. The formation of porous materials containing organic linkers or polyhedral oligomeric siloxane covalently bonded to zeolite layers in the interlayer space was confirmed by a variety of characterization techniques (N2/Ar sorption analysis, XRD, (29)Si and (13)C NMR, TEM). The organic-inorganic porous hybrids obtained by intercalation with silsesquioxane posessed layered morphology and contained large crystalline domains. The hybrids exhibited mesoporous or hierarchical micro-/mesoporous systems, stable up to 350 °C. Textural properties of the formed zeolitic organic-inorganic materials can be controlled by varying the linker or synthetic conditions over a broad range. Surface areas and pore volumes of synthesized hybrids significantly exceed those for parent zeolite UTL and corresponding swollen material; the amount of micropores increased with increasing rigidity and size of the organic linker in the order biphenyl > phenylene > ethanediyl.

15.
Chemistry ; 20(33): 10446-50, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25042288

RESUMO

Top-down synthesis of 2D materials from a parent 3D zeolite with subsequent post-synthetic modification is an interesting method for synthesis of new materials. Assembly, disassembly, organisation, reassembly (ADOR) processes towards novel materials based on the zeolite UTL are now established. Herein, we present the first study of these materials by atomic force microscopy (AFM). AFM was used to monitor the ADOR process through observation of the changes in crystal surface and step height of the products. UTL surfaces were generally complex and contained grain boundaries and low-angle intergrowths, in addition to regular terraces. Hydrolysis of UTL to IPC-1P did not have adverse effects on the surfaces as compared to UTL. The layers remained intact after intercalation and calcination forming novel materials IPC-2 and IPC-4. Measured step heights gave good correlation with the X-ray diffraction determined d200 -spacing in these materials. However, swelling gave rise to significant changes to the surface topography, with significantly less regular terrace shapes. The pillared material yielded the roughest surface with ill-defined surface features. The results support a mechanism for the majority of these materials in which the UTL layers remain intact during the ADOR process as opposed to dissolving and recrystallising during each step.

16.
Curr Probl Cardiol ; 49(9): 102746, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002618

RESUMO

Nutrition can play a key role in cardiovascular disease risk reduction, and its risk factors modification. This paper aims to present, compare, and summarize the main dietary concepts for preventing the main cardiovascular disease risk factors - obesity, hypertension, and dyslipidemia. The dietary models and macronutrient intakes were compared between main cardiovascular risk factors prevention recommendations. Dietary recommendations related to selected cardiovascular risk factors share the points, that can be suggested as crucial for overall cardiovascular risk factors reduction. Recommendations suggest limiting saturated fatty acids intake to <10% of total caloric intake in obesity, and <7 % in hypercholesterolemia, along with an increased intake of mono- and polyunsaturated fatty acids. In addition, daily dietary fiber intake should reach a level of 25-40 g. The vegetables and fruits should be consumed at a daily minimum level of 200g (or 4-5 portions) each. Salt intake should not exceed 5g/day. Alcohol should be generally avoided, and moderate intake levels (sex-specific) should not be exceeded. It is also worth noting, that proteins are essential for tissue formation and regeneration. Carbohydrates are the main source of energy, but it is necessary to choose products with a low glycemic index. Dietary antioxidants help combat free radicals and prevent cell damage.


Assuntos
Doenças Cardiovasculares , Fatores de Risco de Doenças Cardíacas , Humanos , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/epidemiologia , Obesidade/epidemiologia , Dieta/métodos , Dislipidemias/epidemiologia , Hipertensão/epidemiologia , Hipertensão/prevenção & controle , Fatores de Risco , Comportamento de Redução do Risco
17.
Adv Mater ; 36(4): e2307341, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37800413

RESUMO

Zeolites are highly efficient industrial catalysts and sorbents with microporous framework structures. Approximately 10% of the frameworks, but eventually all in the long run, have produced both 3D crystals and 2D layers. The latter can be intercalated and expanded like all 2D materials but proved difficult to exfoliate directly into suspensions of monolayers in solution as precursors for unique synthetic opportunities. Successful exfoliations have been reported recently and are overviewed in this perspective article. The discussion highlights 3 primary challenges in this field, namely finding suitable 2D zeolite preparations that exfoliate directly in high yield, proving uniform layer thickness in solution and identifying applications to exploit the unique synthetic capabilities and properties of exfoliated zeolite monolayers. Four zeolites have been confirmed to exfoliate directly into monolayers: 3 with known structures-MWW, MFI, and RWR and one unknown, bifer with a unit cell close to ferrierite. The exfoliation into monolayers is confirmed by the combination of 5-6 characterization techniques including AFM, in situ and in-plane XRD, and microscopies. The promising areas of development are oriented films and membranes, intimately mixed zeolite phases, and hierarchical nanoscale composites with other active species like nanoparticles and clusters that are unfeasible by solid state processes.

18.
J Mater Chem A Mater ; 12(2): 802-812, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38178865

RESUMO

Zeolites have been well known for decades as catalytic materials and adsorbents and are traditionally prepared using the bottom-up synthesis method. Although it was productive for more than 250 zeolite frameworks, the conventional solvothermal synthesis approach provided limited control over the structural characteristics of the formed materials. In turn, the discovery and development of the Assembly-Disassembly-Organization-Reassembly (ADOR) strategy for the regioselective manipulation of germanosilicates enabled the synthesis of previously unattainable zeolites with predefined structures. To date, the family tree of ADOR materials has included the topological branches of UTL, UOV, IWW, *CTH, and IWV zeolites. Herein, we report on the expansion of ADOR zeolites with a new branch related to the IWR topology, which is yet unattainable experimentally but theoretically predicted as highly promising adsorbents for CO2 separation applications. The optimization of not only the chemical composition but also the dimensions of the crystalline domain in the parent IWR zeolite in the Assembly step was found to be the key to the success of its ADOR transformation into previously unknown IPC-17 zeolite with an intersecting 12 × 8 × 8-ring pore system. The structure of the as-prepared IPC-17 zeolite was verified by a combination of microscopic and diffraction techniques, while the results on the epichlorohydrin ring-opening with alcohols of variable sizes proved the molecular sieving ability of IPC-17 with potential application in heterogeneous catalysis. The proposed synthesis strategy may facilitate the discovery of zeolite materials that are difficult or yet impossible to achieve using a traditional bottom-up synthesis approach.

19.
Polim Med ; 43(3): 135-40, 2013.
Artigo em Polonês | MEDLINE | ID: mdl-24377178

RESUMO

BACKGROUND: Biomaterials in the form of thin-film coatings as-deposited on different substrates are nowadays increasingly popular. In particular coatings based on a combination of biocompatible materials (eg. titanium) with metals of high biological activity (eg. copper) have a potentially wide range of applications as active films, intended for various types of medical devices. OBJECTIVES: The aim of this study was to present a method for preparation and analysis of the properties of Cu-Ti thin films, in particular their biological activity in connection with the properties of the surface. MATERIAL AND METHODS: The films were prepared by magnetron sputtering method with the aid of an innovative four-target apparatus. During deposition process two metallic targets (copper and titanium) were sputtered under an argon atmosphere. Material composition of produced coatings was characterized by scanning electron microscope equipped with an adapter for energy dispersive spectroscopy. Moreover, the surface microstructure and roughness of coatings was characterized based on three-dimensional surface profiles, which were obtained with the aid of optical profilometer. The research was also carried out by investigations of surface wettability on the apparatus for measurements of contact angle. Characterization of Cu-Ti surface properties was also expanded by microbiological tests involving Staphylococcus aureus (PCM 2602) bacteria and investigations of cytotoxicity with L 929 (NCTC clone 929) cell line. RESULTS: Measurements have shown that the film was composed of 71% at. Cu and 29% at. Ti. The analysis of surface topography has shown that the surface of Cu-Ti thin film was very uniform with roughness in range of nanometers. It was found that as-deposited film is hydrophilic. Obtained results has shown that as-deposited film had a very good bactericidal properties and it was cytotoxic. This effect was associated with the migration of copper ions, which was the most intense at the edge of the sample. CONCLUSIONS: The results presented in this paper testify that manufactured Cu-Ti thin films may find practical application in the industry as a bioactive coating.


Assuntos
Materiais Revestidos Biocompatíveis/química , Cobre/química , Teste de Materiais , Titânio/química , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Molhabilidade
20.
Polim Med ; 43(3): 141-6, 2013.
Artigo em Polonês | MEDLINE | ID: mdl-24377179

RESUMO

BACKGROUND: Titanium dioxide is widely used as a bacteriostatic and non-toxic material. It is important, therefore, to modify its properties, for greater biological activity. OBJECTIVES: The aim of this study was comparison of the specific surface properties and the biological activity of TiO2 and TiO2 with niobium and copper additives--TiO2:(Nb,Cu) thin films. MATERIALS AND METHODS: TiO2 and TiO2:(Nb,Cu) thin films were prepared by high-energy magnetron sputtering of metallic Ti-Nb-Cu target in oxygen atmosphere. Films that have been deposited on glass substrates were investigated by transmission method and with the aid of optical profiler transparent. Besides, wettability measurements and antibacterial testes with Pseudomonas aeruginosa (PCM2058) were performed. RESULTS: The light transmission characteristics have shown that the film with niobium and copper additives was less transparent than undoped titanium dioxide. Studies of surface geometric structure, performed with the aid of optical profilometer, have shown that coatings were uniform and the surface roughness had several nanometers. The roughness of TiO2:(Nb, Cu) was higher compared to the film of undoped TiO2. The wettability measurements have shown that (Nb, Cu) additives cause a significant reduction in the degree of surface wettability relative to TiO2 and the change of properties from hydrophilic to hydrophobic. The results of the microbiological tests have shown that the TiO2:(Nb, Cu) film had a very good antibacterial properties, while the undoped TiO2 did not exhibit such properties. CONCLUSIONS: The analysis of all results of carried investigations has shown that manufactured TiO2:(Nb,Cu) thin films can be used as a transparent antibacterial coating.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Cobre/química , Nióbio/química , Pseudomonas aeruginosa/efeitos dos fármacos , Titânio/química , Titânio/farmacologia , Cobre/farmacologia , Nióbio/farmacologia , Propriedades de Superfície , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA